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Determination of the Pole-Singularity Order in Spectral
MoM Formulations for Source-Free Planar Periodic

Structures

Y. Kaganovsky and R. Shavit

Abstract—The order of the pole singularities encountered in spectral
method of moments formulations for source-free periodic problems is
investigated. The solution of the source-free problem is often obtained
by searching for the zeros of the Z matrix determinant using an iterative
algorithm. During this process, pole singularities of the determinant are
encountered and may cause numerical instability. In order to cancel the
poles, their order must be known. A rigorous proof of the pole singularity
order in the Z matrix determinant is given. The proof is general and holds
for any problem which is periodic in at least one of the spatial directions.
This knowledge enables to cancel the poles by an appropriate fixed factor
with a simple routine.

Index Terms—Periodic structures, pole-singularity, spectral method of
moments.

I. INTRODUCTION

The spectral method of moments (MoM) formulations for planar pe-
riodic structures usually employ the spectral Green’s function of the
background structure. As a result, pole-singularities corresponding to
the modal solutions of the background structure and branch-point sin-
gularities are introduced into the Z matrix and its determinant. In planar
stratified structures, the spectral Green’s function can be derived ana-
lytically with the use of a transmission line model and the locations of
its poles can be found numerically by searching for the zeros of the de-
nominator. The locations of the branch points of the spectral Green’s
function are well known.
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Fig. 1. Periodic structure on a general planar stratified structure.

A mapping of the spectral variables to the complex angle plane [1]
can be used to cancel the branch point singularities of a specific space
harmonic, thereby leaving only the pole singularities at some distance
away from the rest of the branch-points.

During the search for the zeros of the Z matrix determinant, the pole
singularities can be encountered, causing divergence of the zero search
algorithms. Since the locations of the poles are known, they can be
removed by multiplying the determinant by a factor which matches the
pole’s order. To this end, we investigate the order of the determinant’s
poles.

We present a rigorous proof, which establishes the degree of the pole
singularities of the determinant. It is shown that a simple (first order)
pole in the spectral Green’s function for the background structure cor-
responds to a simple pole in the determinant.

II. STATEMENT OF THE PROBLEM

The general formulation outlined here pertains to a class of planar
stratified structures with metallic patches periodic along the x and y
axes, as shown in Fig. 1.

The electric field integral equation for this problem is

E(x; y; z = 0) = G(x; y)Js(x; y)dxdy = 0: (1)

The unknown induced currents, Js(x; y) on the metallic patches can
be written using separation of variables as

Js(x; y) = S(x)T (y) (2)

Due to the periodicity of the structure, the current can be written in the
form of a double summation of spatial harmonics, namely [2]

J(x; y) =

1

m=�1

1

n=�1

S(kxn)T (kym)e
�jk x

e
�jk y (3)

where

kxn = kx +
2�n

a
; kym = ky +

2�m

b
(4)
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and S(kxn); T (kym) are the Fourier transforms of S(x) and T (y), re-
spectively. Substitution of (3) into (1) and discretization of the integral
equation using the MoM, yields a N � N matrix, denoted as Z, with
the following structure:

Z(k) =
Zxx(k) Zxy(k)

Zyx(k) Zyy(k)
(5)

where k = kxx+kyy andZuv(k)(u; v = x or y) denotes anNu�Nv

matrix in which the elements are obtained in a similar fashion to [3]
given by

Zuv;pr(k) =

M

n=�M

M

m=�M

Wu;p(�knm)Guv(knm)Bv;r(knm)

(6)

where knm = kxnx+ kymy;Wu;p is the spectral pth weight function

for the field in the u direction andBv;r is the spectral rth basis function
for the induced current in the v direction. Mx and My are the number
of spatial harmonics in the x and y directions, respectively.Guv(knm)
in (6) is the spectral Green’s function sampled at the wave-numbers of
the spatial harmonics and can be written in the following form:

Guv(knm)
guv(knm)

D(knm)
(7)

where the zeros ofD(knm) correspond to homogenous solutions to the
background structure.

Let kP (kx + (2�nP )=(a))x+(ky + (2�mP )=(b))y denote
the P th pole of (7) for the spatial harmonics n = nP and m = mP

with k = kx x+ ky y. This pole corresponds to the zero of D(kP ).
Let Z(P )(k) denote the matrix Z with the P th singularity removed,

obtained by multiplying each of the matrix elements by the scalar func-
tion D(kP )

Z
(P )(k) = Z(k)D(kP ) (8)

Substitution of (6) and (7) into (8) yields the elements ofZ(P )uv (k) given
in the following form:

Z(P )
uv;pr(k) = Wu;p(�knm)Guv(knm)

Bv;r(knm)D (kP ) +Wu;p(�kP )guv(kP )Bv;r(kP ): (9)

Based on (8), the determinant of Z(k) can be expressed by

det(Z(k)) =
det Z(P )(k)

(D (kP ))
N

(10)

It is well known that the Green’s function in (7) has poles of the
first order [4], so D(kP ) is assumed to have only a zero of the first
order at kP . All functions in (9) are assumed to be analytical at kP
(which is mostly the case in practical situations, see for example [3])
and therefore, which is obtained from a sum of products of the functions
in (9), is also analytical at kP and can have only a zero of an integer
degree.

In the next section, it is rigorously proven that the determinant of
Z(P )(k) defined by (8) has a zero of the (N � 1)th order at the P th
singularity point.

III. PROOF

Definition: Let M(L)
RC(Z) denote a minor of the Lth order of the

matrix Z, defined as

M
(L)
RC

(Z) MR C (MR C (. . .MR C (Z))) (11)

where MR C (A) is a first order minor matrix obtained by removing
the th row and the Clth column of a given matrix A:Rl and Cl are
the lth elements of the vectors R and C respectively. These vectors
are of dimensions 1xL and contain all indexes of rows and columns,
respectively, which were removed in each minor operation.

Corollary: det(M
(L)
RC

(Z(P )(k))) = 0 at k = kP for any 0 � L �
N � 2(N � 2) and for any choice of R and C.

Proof: The elements of the Lth order minor of the matrix
Z
(P )
uv (k), given by (9), can be written at k = kP (the P th singularity

point) as

M
(L)(Z(P )uv (kP ))

p;r
= Wu;I (�kP )guv(kP )Bv;J (kP ) (12)

where I and J are the vectors containing the indexes of the rows
and columns of Z(P )uv (k) which are left after the Lth order minor. It
is straight forward to verify that the Lth order minor of the matrix
Z(P )(kP ) has the same structure of (12) and that the rows and columns
of these matrixes are linearly dependent (for a matrix with dimensions
greater than 1� 1). The later can be visualized in (13), shown at
the bottom of the page, where the dependence on kP was omitted
for simplicity. NI and NJ are the number of rows and columns left
after the Lth order minor. It can be seen in (13) that any two rows
or columns differ only by a factor equal to the ratio between two
different basis or weight functions. Therefore, the determinant of
M(L)(Z

(P )
uv (kP )) is zero. The matrix which results after the Lth order

minor is of dimensions greater than 1� 1 if the minor is of the order:
L � N � 2 (For L = N � 1, we are left with a scalar for which the
determinant is non zero).

Lemma 1:

@m

@kmx @km�my

adj M
(L)
RC

(Z(P )(k))

M
(L )

Z
(P ) (kP ) =

W I g B J W I g B J � � � � � � � � � � � � �W I g B J

W I g B J W I g B J � � � � � � � � � � � � �W I g B J

...
W I g B J W I g B J � � � � � � � � � � � � �W I g B J

(13)
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is the zero matrix at k = kP for any non-negative integers m;mx and
L satisfying: m + L � N � 3(N � 3) and mx � m, where m is
the order of the derivative and mx is the order of the derivative with
respect to kx.

Proof: We prove by induction
Step 1: We check for m = 0. Making use of the relation [5]

[adj(Z)]pr = (�1)p+r det(Mrp(Z)) (14)

we have

adj M
(L)
RC

Z
(P )(k)

pr
= (�1)p+r det M

(L+1)
R C

Z
(P )(k)

(15)

where

R2 = [R r]

and

C2 = [C p]: (16)

From the corollary, we can deduce that the determinant in (15) is zero
at k = kP for every L satisfying: L � N � 3. Thus the lemma holds
for m = 0.

Step 2 -Hypothesis: We assume the lemma holds for any m;mx and
L satisfying 0 � m �M0;M0 + L � N � 3 and mx � m. Without
loss of generality, we also assume that N � 4.

Step 3: We now have to prove that the lemma holds for any m;mx

and L satisfying 0 � m � M0 + 1;M0 + L � N � 4(N � 4) and
mx � m. We start by increasing by 1 the order of the derivative with
respect to kx and using (15)

@M +1

@km +1
x @kM �m

y

adj M
(L)
RC Z

(P )(k)
pr

=(�1)p+r
@M

@kmx @kM �m
y

@

@kx
det M

(L+1)
R C

Z
(P )(k) (17)

we use the following relation [6]:

@

@k
det(Z(k)) = tr adj(Z(k))

@

@k
Z(k) (18)

which holds for any matrix Z and k = kx; ky .
Substitution of (18) into (17) yields

@M +1

@km +1
x @kM �m

y

adj M
(L)
RC Z

(P )(k)
pr

= (�1)p+r
@M

@kmx @kM �m
y

tr

� adj M
(L+1)
R C

Z
(P )(k)

�
@

@kx
M

(L+1)
R C

Z
(P )(k) : (19)

We now interchange the minor and derivative operations inside the
main parentheses of (19) on the right hand side. We also interchange

the trace operation and the M0th derivative in (19). Using the extended
rule for the derivative of a product we have

= (�1)p+r
m

�=0

mx

�

M �m

�=0

M0 �mx

�

tr
@�+�

@k�x@k
�
y

adj M
(L+1)
R C

Z
(P )(k)

@(M ����)

@k
(m ��)
x @k

(M �m ��)
y

M
(L+1)
R C

@Z(P )

@kx
(k) : (20)

From the given condition: L +M0 � N � 4 it follows that for any:
0 � (� + �) � M0 we have: (� + �) + (L + 1) � N � 3 which
is exactly the condition of the induction hypothesis (substitute L + 1
instead of L as the order of the minor and � + � instead of m as
the derivative order in the assumption of step 2). It follows from the
induction hypothesis that all the derivatives of the adjugate matrix in
(20) are zero matrixes. In addition, the derivatives of the Z(P ) matrix
in (20) can have no singularities since it’s elements are assumed to be
analytical functions at k = kP . Thus, the trace is zero. If we increase
in (17) the order of the derivative with respect to ky instead of kx, we
obtain the expression in (20) with @Z(P )=@kx replaced by @Z(P )=@ky
and the same result is obtained. In conclusion, it was shown that the
lemma holds for m = 0 and that assuming the lemma holds for any
m �M0, it also holds for: m = M0 + 1. Based on the induction, the
lemma is thus proved.

Lemma 2: (@m)=(@kmx @km�my ) det(M
(L)
RC

(Z(P )(k))) = 0 at
k = kP for any non-negative integers: m;mx and L satisfying m +
L � N � 2(N � 2) and mx � m, for any choice of R and C.

Proof: We use (18) and interchange the order of the trace and
derivatives to obtain

@m

@kmx @km�my

det M
(L)
RC

Z
(P )(k)

= tr
@m�1

@km �1
x @km�my

� adj M
(L)
RC

Z
(P )(k) M

(L)
RC

(
@

@kx
Z
(P )(k)) : (21)

Based on Lemma 1, the expression in (21) is zero at k = kP for every:
m;mx and L satisfying mx � m and (m� 1) + L � N � 3 or
m + L � N � 2.

It follows from Lemma 2 that for L=0 we have:

@m

@kmx @km�my

det Z(P )(k) = 0

at k = kP for anym andmx satisfying 0 � m � N�2 andmx � m.
The above conclusion states that det(Z(P )(k)) (which as stated be-

fore is an analytical function) has a zero of at least the (N �1)th order
at k = kP . From (10) it follows that if det(Z(k)) has a singularity
point at k = kP , it is a pole singularity of the first order. Numerical
calculations show that det(Z(k)) has singularity points at k = kP and
this leads to the conclusion that det(Z(k)) has a pole of the first order
at k = kP (for any P).

IV. CONCLUSION

The pole singularity order in the determinant of the Z matrix in MoM
formulations for planar stratified periodic structures was investigated. It
has been proven rigorously that the determinant can only have a simple
pole singularity at a simple pole of the spectral Green’s function used
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to construct the Z matrix. Numerical observations were made in order
to establish the fact that the determinant has indeed singularities at the
poles of the Green’s function. The knowledge of the singularity order
enables to cancel automatically the singularities whenever a zero search
is conducted in their proximity. The proof given in this work is general
and can be applied to any planar structure which is periodic in one of
the spatial directions.
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The Reverberating Chamber as a Line-of-Sight Wireless
Channel Emulator

Antonio Sorrentino, Giuseppe Ferrara, and Maurizio Migliaccio

Abstract—The reverberating chamber (RC) is employed to physically
emulate line-of-sight (LOS) propagation channels and to test the quality
of a digital transmission. Use of different absorber configurations is able
to generate various LOS propagation channels. The LOS channels are ob-
jectively characterized by the Rician factor and results show that
is not generally dependent only on the number of absorbers but also on
their configuration. Experiments are accomplished at the electrically large
mode-stirred RC of the Università di Napoli Parthenope, formerly Istituto
Universitario Navale (IUN) and a Global System for Mobile Communica-
tions (GSM) digital signal is used.

Index Terms—Line-of-sight, reverberating chamber, wireless.

I. INTRODUCTION

In recent years wireless digital communications had an enormous
impact in daily life which required and still requires the development
of new devices. Therefore the need of effective and economical test
facilities to evaluate the functionality of the devices, in various wire-
less channels, is a key issue. In particular it is important to evaluate the
transmission quality and robustness of the digital signals, employed by
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these wireless devices, in non-line-of-sight (NLOS) channels, where
only scattered waves arrive to the receiver, and in line-of-sight (LOS)
channels, in which there is also a direct link between the transmit-
ting and the receiving antenna. In the first case, the field structure is
modelled by a Rayleigh field model; in the second one, the field struc-
ture is modelled by a Rice field model. From a physical point of view,
the Rayleigh distribution is well justified, as the received signal is as-
sumed to be a superposition of a large number of randomly phased
waves. More important are the LOS channels where the received signal
is the combination of a dominant component, due to the direct link be-
tween the transmitting and the receiving antenna, and multiple scattered
waves. In this last case, i.e., in a LOS channel, the fading depth on the
received signal can be measured by means of the Rice factor, K , as
explained in the following. Each LOS channel is characterized by its
own K value. A NLOS channel is a particular case of LOS channel
obtained when K = 0.

Usually, the natural norm to characterize the quality of the digital
transmission in NLOS and LOS propagation channels is the bit-error-
rate (BER). The BER values are related to signal-to-noise ratio (SNR)
[1]. In a NLOS channel, the BER values are always less sensitive to
SNR than in a LOS channel [2].

Many numerical simulation tools have been developed in these last
years to simulate fading channels and to analyze the transmission
quality and robustness of digital received signals transmitted through
wireless channels.

This work proposes instead a physical, simple, controllable and eco-
nomical convenient way to emulate LOS channels by means of the re-
verberating chamber (RC). The RC is a shielded, usually electrically
large, cavity in which it is possible to generate a stochastic field by
means of mechanical, platform, frequency or polarization stirring. Al-
though the RC was first applied as an electromagnetic compatibility
(EMC) test facility [3], [4] and to expose biological samples to a time
variant stochastic field [5], [6], in recent years its use as propagation
channel emulator has attracted the interest of some researches. In fact,
the statistical behaviour of the field in a RC [7]–[11] suggests em-
ploying the chamber as an emulator of wireless NLOS and LOS chan-
nels. In fact, in [12] the RC is employed to analyze the robustness of
a Global System for Mobile Communications (GSM) signal when it is
transmitted through a NLOS propagation channel. Indeed, in [13]–[15]
the RC is employed to generate a controllable NLOS channel to mea-
sure the receiver sensitivity [13], the radiation efficiency and the free
space impedance of antennas of mobile phones [14] and to test the per-
formances of a multiput-input, multiput-output (MIMO) systems [15].
Two methods are proposed in [13] to measure the receiver sensitivity
of mobile phones in a small RC. In both of them the receiver sensitivity
is quantified in terms of the input signal level at a certain BER level. In
the first method the RC is mode-tuned operated and the receiver sen-
sitivity is measured by the total isotropic sensitivity (TIS). In the other
method, the small RC is mode-stirred operated and the receiver sensi-
tivity is measured by the average fading sensitivity (AFS). The com-
parison between the results obtained by the two different working con-
figurations shows that the mode-stirred is the most suitable and faster
working configuration of the RC [13].

Above mentioned papers regard NLOS channels. In this paper we
extend the use of a RC to emulate LOS propagating channels making
benefit of the ground papers [12], [16]. In fact in [12] it is shown that
the RC can be employed as an NLOS propagation channel emulator
and in [16] that the RiceK factor can be controlled in a RC by placing
some absorbers in the chamber.

In this paper, the large mode-stirred RC of the Università di Napoli
Parthenope, formerly Istituto Universitario Navale (IUN), is employed
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