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Direction of Arrival Estimation in the Presence of
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Abstract—The direction of arrival (DOA) estimation problem
in the presence of signal and noise coupling in antenna arrays is
addressed. In many applications, such as smart antenna, radar
and navigation systems, the noise coupling between different an-
tenna array elements is often neglected in the antenna modeling
and thus, may significantly degrade the system performance. Uti-
lizing the exact noise covariance matrix enables to achieve high-
performance source localization by taking into account the colored
properties of the array noise. The noise covariance matrix of the
antenna array consists of both the external noise sources from sky,
ground and interference, and the internal noise sources from am-
plifiers and loads. Computation of the internal noise covariance
matrix is implemented using the theory of noisy linear networks
combined with the method of moments (MoM). Based on this noise
statistical analysis, a new four-port antenna element consisting of
two orthogonal loops is proposed with enhanced source localization
performance. The maximum likelihood (ML) estimator and the
Cramer-Rao lower bound (CRLB) for DOA estimation in the pres-
ence of noise coupling is derived. Simulation results show that the
noise coupling in antenna arrays may substantially alter the source
localization performance. The performance of a mismatched ML
estimator based on a model which ignores the noise coupling shows
significant performance degradation due to noise coupling. These
results demonstrate the importance of the noise coupling modeling
in the DOA estimation algorithms.

Index Terms—Antenna array, antenna noise, Cramer-Rao lower
bound (CRLB), direction of arrival (DOA), maximum likelihood,
noise coupling, sky noise, smart antennas, source localization,
vector sensor.

I. INTRODUCTION

HE noise statistics in a receiving system is important to

determine its performance. The noise statistical informa-
tion at the receiving ports of the sensor array is assumed to
be known for implementation of optimal source localization
methods [1]. In noise analysis of typical receiving arrays, it is
often assumed that the port noises are statistically independent
[2]-[4]. This implicit assumption is rarely satisfied due to mu-
tual coupling and environmental noise. The effect of noise sta-
tistics mis-specification significantly degrades the performances
of most high-resolution array processing algorithms [5], [6].
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The increase in demand for compact multi-antenna receiving
arrays has yielded a large amount of array designs in the recent
literature [4], [7]. Many of these array configurations exhibit a
strong correlation between the port noises of the different el-
ements in the array. This problem is especially significant in
vector-sensor arrays where a strong mutual coupling exists be-
tween the various antenna array elements.

Several works [8], [9], have suggested approaches for the
compensation of signal mutual coupling effects in antenna ar-
rays. Other works have examined the impact on channel ca-
pacity due to signal mutual coupling [10], [11]. However, all
these works assume statistically independent port noises. Re-
cent works address the subject of noise coupling. In [12], the
noise covariance matrix is computed to obtain the multiple input
multiple output (MIMO) channel capacity in a communication
system. The system noise coupling effect is considered through
the scattering matrix of the transmit and receive arrays, which
is assumed to be known. In [13], the noise power at each el-
ement is obtained by considering the noise coupling between
the different elements for finite and infinite arrays. The noise
power at each element was used to compute the signal-to-noise
ratio (SNR) pattern at the output of a beamformer. In [14], the
radio astronomy problem of optimal signal detection (in terms
of signal-to-interference noise ratio) by a reflector with a focal
plane array is considered. The noise contribution is from am-
plifiers, spillover and interference. The noise coupling effect
is considered by assuming known scattering matrix. All these
works assume a prior knowledge of the scattering matrix.

This paper addresses the problem of source localization in the
presence of signal and noise coupling in the antenna array. Uti-
lizing the complete noise covariance matrix enables to achieve
high-performance source localization by taking into account the
colored properties of the array noise. The noise covariance ma-
trix is computed by taking into consideration the external noise
from sky, ground and interference, in addition to the internal
noise due to amplifiers and loads. The analysis of the antenna
array noise covariance matrix is based on the well-established
linear noisy networks theory [13] combined with the method of
moments (MoM). The use of MoM enables to consider antenna
arrays with complex geometries.

The paper is organized as follows. In Section II the signal and
noise models are derived using the MoM. The noise model in-
cludes the external and internal noise contributions. Based on
this formulation, the maximum-likelihood (ML) for direction-
of-arrival (DOA) estimation and the Cramér-Rao lower bound
(CRLB) for this problem are derived in Section III. Section IV
presents numerical examples of a two-dipole antenna array and
of a two-orthogonal-loop antenna array, which illustrate the ap-
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plication of the theory developed in this paper and its importance
in antenna array design for source localization. Section V sum-
marizes the main results of this study.

II. SIGNAL AND NOISE MODELS IN ANTENNA ARRAYS

In this section, the signal and noise models for a general array
of coupled antennas are established. These models are required
for implementation of mismatch-free source localization algo-
rithms. In this paper, we consider a wire antenna array in the
receive mode. The wire antenna array can be analyzed using the
MoM by describing the antenna array as an L-port network [16].

A. Signal Model in Antenna Arrays

The induced current vector on the antenna array segments, I,
is related to the induced voltage vector by Z - I = V, where
Z is computed using the MoM formulation. Using the Galerkin
pulse—pulse method [16], the vector of voltages induced on the
N segments of a wire antenna array by an incident wavefront
arriving from elevation and azimuth angles, (6, ¢), can be ex-
pressed in the form [17]

V =H(4,¢)E, ey

in which H(f, ) denotes the antenna matrix effective height,
and E = Ey

Ey
ical MoM formulation, all the segments, except the input/output
port segments, are short-circuited to yield a continuous wire
antenna. The segments corresponding to the antenna ports are
usually loaded by impedance loads. The port voltages vector,
V, and the port currents vector I, may be defined as V,, =
PV, I, = PI, where P is the indexing matrix of dimension
L x N indicating the locations of each one of the ports in the
MoM decomposition. Let Z;,, denote a diagonal matrix of size
L x L with the port load impedances on its diagonal, and Y de-
note the embedded admittance matrix of the antenna array [27],
defined as Y}, = P (Z + P7Z;,P)”' P”, where (-)7 is the
matrix transposition operator. The induced currents in the ports
of the array can be described by I, = PY'V, and using (1) it
can be rewritten in the form

is the incident electric field vector. In the typ-

I, = U6, $)E @)

where U(0, ¢) = PY'H(0, ¢) is the steering matrix of dimen-
sion L x 2.

B. Noise Model in Antenna Arrays

The problem of noise coupling in linear networks has been
addressed in [18] and [19] in which the noise current covariance
matrix is found to be linearly dependent on the network ambient
temperature, 7', and the real part of the network admittance ma-
trix. This analysis can be applied for the calculation of the noise
current covariance matrix in an antenna array loaded by passive
impedances. In this case, the noise current covariance matrix of
the array ports can be expressed by

N; £ E{LI"} = 4KTBRe (Y}) . A3)
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Fig. 1. L-port antenna array configuration loaded with LNAs.

where (-)# is the conjugate transpose operator, K is Boltzman’s
constant, and B is the system bandwidth.

This formulation provides a simplified noise model, which
considers mutual coupling in an antenna array, isolated from
external noise and internal noise due to low noise amplifiers
(LNAs). However, it is limited to particular cases of passive
loading of the antenna array and isotropic external noise dis-
tribution. In the practical cases of active loading of the antenna
array, a more complex noise model is required as described in
Section II-B.1. Moreover, in the case of anisotropic external
noise distribution, the noise covariance matrix cannot be char-
acterized by a single scalar temperature 1" as implied in (3).
Section II-B.2 analyzes the external noise covariance matrix for
this general case.

The total noise contribution at the receiver input can be con-
sidered as a superposition of two uncorrelated noise sources: (1)
the internal noise due to active (LNAs) and passive components,
and (2) external noise due to environmental distributed sources.
Accordingly, the total noise current covariance matrix can be
expressed by

N; = N4+ NF “)

where N#' is the internal noise current covariance matrix and
N¥ denotes the external noise current covariance matrix. In
Section II-B.1, the noise current covariance matrix, N? due to
LNASs contribution is obtained. In Section II-B.2, the external
noise current covariance matrix N is analyzed.

1) Noise in Antenna Arrays With Amplifiers: In a practical re-
ceiving system, the antenna is connected to LNAs and therefore,
the previous model should be extended to consider the noise
contribution of the LNAs. Fig. 1 describes the configuration for
the noise model for an L-port antenna array with LNAs. This
problem was investigated in [13]. In the following, the covari-
ance matrix of the LNA noise current will be developed using
the model presented in [20], in which it is shown that the ef-
fect of internal noise sources of LNAs can be represented by a
noiseless circuit with external noise sources, placed at its input
terminal.
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The amplifier at the sth port is characterized by two correlated
noise voltage and current sources, V,,; and I,,;, respectively. The
variances of these sources and their correlation are given by

E{|V,;|*} =4KTBR,; (5)
E{|I;|*} =4KTBG,; (6)
E{V,;I};} =4KTBY,* R, (7)

where R,,;, Gy, and Y., ,.; are the noise resistance, conductance,
and admittance of the LNA, respectively.

The vector of noise currents flowing through the input imped-
ances Z;, = diag(Zn1, ..., Zinr) is given by

I, =Y, (V. +Z,L,) (8)

where V,, = Vo1, ..., Var 5, In = [Ing, . . ., Inp]T. The port
impedance matrix, Z,, can be computed by standard numer-
ical methods. Using the MoM, Z,, can be expressed by Z, =
(PZ_lPT)_l, and by simple matrix manipulations, Y, =
P (Z + PTZmP) PT deﬁned in Section II-A, can be sim-
plified to Y}, = (Z, + Zin) "', Accordingly, the LNAs input
noise current covariance matrix can be described by

N, = E{LIf} = Y, E{V.V." } v}
H\| pH~N H
+Y,E{V.L"} 7Y,
H H
+Y, 2,5 {1V} Y

+Y,Z,B {11} 21Y; " ©)

The noise voltage and current sources of the different LNAs
are uncorrelated and therefore, the covariance matrices
E{VnVnH}, E{InInH , and the cross covariance ma-

wix B {V,L,"
given by (5)-(7).

2) External Noise Model: The noise model described
above, can be extended to include external/environmental noise
received by the antenna array. In general, the external noise
sources are spatially distributed, like sky and ground noise. The
external noise can be modeled as an ensemble of TEM plane
noise waves in both polarizations incident from all azimuth and
elevation angles. Furthermore, the noise waves are assumed to
be spatially uncorrelated.

Based on (2), the total noise vector induced in the antenna
ports, is a superposition of all external noise waves. Thus, the
port noise current induced by the external noise sources can be
expressed by

are diagonal matrices whose ¢th elements are

= /QU(&qS)E(H,gb)dQ (10

where E(6, ¢) is the electric field of the external noise wave
incident from direction (¢, ¢), and €2 is the steradian angle for
which d€) = sin 8dfd¢. Using this expression, and under zero-

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 55, NO. 7, JULY 2007

mean noise assumption, the covariance matrix of the induced
noise current is

NP = (IEIEH)

[ f oo

x UH(¢, ¢")dQdsY .

(E@0, $)ET (0", ¢"))
(11)

Under the assumption of uncorrelated white noise in space and
polarization, the expectation in (11) can be expressed in terms of
the spatial power density, S(6, ¢), using the following relation

B (B0, )R8, ¢)) _
n

SO, 9LsQ-) (12
where 17 = 1207 ohm is the free space characteristic impedance
and I is an identity matrix of size 2. In a narrowband system,
satisfying B < ¢/A (c is light velocity and A is the carrier
wavelength), the received noise power from an incremental solid
angle, df2, can be described by
S(6, )2 D(6, $)d0 = K BT(0, 6)D(0, 6) "
7 47'[' ? - ? 7 47'['
in which D(6, ¢) is the antenna directivity, and 7'(6, ¢) is the
environmental noise temperature. Measured values of 7'(6, ¢)
in various frequencies can be found in the literature [17]. Sub-
stitution of (12) and (13) into (11), and evaluating the integration
with respect to ', results in

KBn "
S [ T6.0706.0)U7(0,9)a0

(13)

N¥ = (14)
This external noise current covariance matrix can be used for
the computation of the total noise current covariance matrix,
N, described in (4). A similar approach taking into account
the noise correlation due to environmental noise temperature,
can be found in [21].

III. SOURCE LOCALIZATION USING COUPLED
ANTENNA ARRAYS

Source localization is an important and common application
of antenna arrays. Mutual coupling in an antenna array may have
a significant impact on its source localization performance. In
this section, the mathematical tools [1], [22], [23] needed to
evaluate the source localization performance of a general an-
tenna array are established by taking into account the signal
and noise mutual coupling in the array. The noise analysis per-
formed in Section II, is used in this section, to describe the noise
measured at the ports of coupled antenna arrays.

The model described in the previous section refers to a three-
dimensional scenario, providing azimuth and elevation informa-
tion for source localization. For simplicity, in the following a
two-dimensional scenario will be considered in which 6 is as-
sumed to be known and set to 90°. For brevity, U(¢) will be
used to denote U(6 = 90°, ¢), defined in (2).

After establishing the signal and noise models, the complete
data model of a receiving antenna array, may be defined as

y = U($)E +n (15)
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where y is the vector of the measured port currents and the noise
vector n is of size L representing the port noise currents. We
assume that the noise current is zero-mean, circular complex
Gaussian distributed:

where N7 is derived in Section II-B.

A. The Maximum-Likelihood Estimator

After establishing the data model, we wish to derive the ML
estimator for the problem of DOA estimation of a signal with
arbitrary polarization. The vector of unknown parameters to be
estimated is

¢
Re {Eg}
Sm {Eg}
Re {Ej}
Sm{E}

a7

Equation (15) and (16) imply that the data model distribution
can be described by

y ~CN(U($)E,Ny). (18)

The ML estimator of ¢ for the model given in (18) is given by
[22], [23]

A~

¢ = argm;}XL(ﬁb) (19)
where L(¢) is the log-likelihood function given by
1(6) = [Powy| 20)
in whichy = N;l/ 2y is the whitened signal vector and
Pog = 06) (T70)0(%) " 079) @b

is the projection matrix into the subspace spanned by the
columns of U = N;I/QU.

The covariance matrix N is Hermitian and positive-definite.
Thus, by expanding (20), the ML estimator may be expressed as

A~

& = argmax {y"N71U(9) (U (9N 'U(4)) ™
xU" ()N 'y}
= argmax | (U7 (9N 'U() UM ()N Yy |
(22)

B. The Cramér-Rao Lower Bound

The CRLB [22] provides an analytic lower bound for the es-
timation error variance of any unbiased estimator, and it is com-
monly used as a lower reference for examining the expected es-
timation performance of unbiased estimators. The CRLB can
be used in the feasibility study stage of an estimation problem
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using a data model. Accordingly, the CRLB can serve as an im-
portant tool in the antenna design process.

In the problem at hand, we wish to establish the CRLB for
DOA estimation using a wire antenna, and compare the perfor-
mance of different estimators to the CRLB. The Fisher informa-
tion matrix (FIM), J for the estimation of the vector of unknown
parameters 7, defined in (17), from the data vector y modeled
in (18), is given by [22], [23]

J =2Re { (LU@(;)E) ! N;! (70(U6(3)E)> } . (23)

Using the FIM, the CRLB for estimation of 7 is given by

cov(f) > C=J7 L (24)
The CRLB on DOA estimation error variance may now be ex-
tracted from the matrix C

var(¢) > [Cli,1. (25)
Thus, if [C]1,1 — o0, then the antenna array is not capable of
estimating ¢ for a signal characterized by the parameter vector
7. This fact may be used to analytically explore the limitations
of a given antenna array for source localization.

IV. NUMERICAL EXAMPLES

In this section, the theory developed in the previous sections
is applied to analyze the effects of noise coupling on two dif-
ferent antenna configurations. First, the use of the mathematical
framework developed for the calculation of the noise current
covariance matrix, is demonstrated using a simple two-dipole
array. The behavior of the noise current covariance matrix is
examined for various dipole distances. Next, a new simple an-
tenna array design named “Two-Loop Vector” is presented and
analyzed. It is shown to yield surprising estimation capabilities,
by exploiting the strong noise coupling between its array ports.

A. Noise Analysis of Two Parallel Dipoles

Consider a simple antenna array consisting of two parallel
z-directed dipole antennas. The dipoles are of length \/2 and
spaced d apart, where ) is the wavelength of the incident wave.
Using the MoM notation, each dipole is divided into 63 seg-
ments of length \/125, and contains one port in its central seg-
ment. The diameter of each dipole is taken to be A/500.

Thus, in this case, the number of ports and the number of
MoM segments were set to L = 2 and N = 126, respectively.
The port segments of the two dipoles (segments 32 and 95) are
loaded by impedances Z;,; and Z;, 5, respectively. All other
segments are short-circuited, to yield a continuous dipole.

Equation (3) provides an expression for the noise currents
covariance matrix of the antenna array with passive loading. The
matrix Y, for the case at hand can be computed using the MoM
to yield

Y = <[Y/]32,32 [Y:]32,95) (26)

[Y/]95,32 ]95,95
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Fig. 2. Noise coupling between two unloaded /2 dipole antennas versus the inter-element spacing, d. (a) Self noise current variance, [N ;] ; and mutual noise

current covariance, [N 7] 2. (b) Noise current correlation coefficient, [Cr]1 2.

This configuration of a twin dipole array was simulated for var-
ious dipole spacings. The simulated dipoles are short-circuited
(Z;,, = 0). The MoM impedance matrix was calculated using
Galerkin’s method with pulse basis and weighting functions.
Fig. 2(a) shows [Nj];1 and [Ny]; o for two parallel dipoles
versus their spacing, d. One can observe that as d increases,
the self noise current variance [N]1,1 — const while the mu-
tual noise current covariance [Ny o — 0, as expected. As d
decreases, the self noise current variance decreases, since the
dipoles are affected by the near scatterer, while the mutual noise
current covariance increases due to the dipoles proximity. At
the limit of zero spacing, both values become equal, as both an-
tennas (and ports) unite. However, these results break down as
d — 0 due to unmodeled azimuthal variation of the true cur-
rents on the finite diameter wires, which are not considered in
this analysis.

Fig. 2(b) shows the noise current correlation coefficient,
[Cr];, Where

[NI]ij

([Nf]ii [Nl]jj)1/2

[Cf]ij =

This quantity describes the amount of coupling between the two
dipole antennas, with |[C;];;| < 1. As d tends to zero, the
magnitude of the noise current correlation coefficient tends to
one indicating that the noise measured in the antennas ports be-
come equal. Under this condition, the antenna array behaves as
a single dipole antenna.

Many analyses of mutual coupling [10], [24] define a quan-
tity named antenna correlation, which is obtained using an EM
integral performed on the antennas patterns. This antenna cor-
relation refers to signal only.

Antenna model

0.1

0.05

z[)
o

-0.05
0.15

-0.15
-0.15

-0.05

X\

Fig. 3. TLV wire-antenna array with port locations.

B. Noise Analysis of Two Rectangular Loop Antennas

In this subsection, a vector sensor antenna array named “Two-
Loop Vector” (TLV) is presented. The concept of two-collo-
cated orthogonal thin-wire loops with two ports is presented in
[25]. A variation of this concept was used to propose a four-port
quadrature vector sensor, including two-orthogonal collocated
thin-wire loops and two-orthogonal collocated dipoles [7].

The antenna shown in Fig. 3, is comprised of two wire rectan-
gular loop antennas with their central axes pointing toward the
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x-axis and the y-axis, respectively. Each antenna has two ports,
creating in total a four ports antenna array. Similar arrays have
been proposed in the literature for DOA estimation and polar-
ization diversity. However, these antennas contain one port per
loop. The array proposed here uses two ports per antenna and
thus, as will be shown, it utilizes the noise coupling between
the ports for enhanced performance in DOA and polarization
estimation.

The ports of the TLV antenna are connected to four identical
LNAs with inputimpedances of 50 2. For the antenna noise anal-
ysis, we consider the contributions of both external and internal
noise sources, and the coupling between the antenna elements.

Using the MoM decomposition notation, each loop is seg-
mented into 148 segments of length )\ /123, giving a total length
of 1.2 for each loop. The diameter of the wire is taken to be
A/500. Ports 1 and 2 are located on z-directed wires of the first
loop, and ports 3 and 4 are located on the y-directed wires of
the second loop. Note that the locations of the two pairs of ports
(1,3) and (2,4) overlap. The impedance matrix, Z,, for this array
was calculated and the result is shown in (27) at the bottom of
the page.

For the external noise current covariance matrix, the
following environmental noise temperature distribution is
considered

100°K

, 0°<f<90°

90° < f < 180°. (28)

Using the above environmental noise temperature and (14), the
external noise current covariance matrix is computed as in (29)
at the bottom of the page.

For the internal noise current covariance matrix, we consider
typical noise parameters for the identical LNAs: R,,; = 5 €,
Grni =0.2mS,and Y,,,; = (1 4+ 53) mS, i =1,...,4. For the
case of matched amplifiers, this is equivalent to a noise figure
of 0.33 dB. Using these parameters and (9), the internal noise
current covariance matrix was computed:

0.33 0.07 0 0
0.07 033 0 0
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Finally, the total noise current covariance matrix for this
array is a superposition of the external and internal covariance
matrices.

Note that the noise at the two ports of each loop antenna are
correlated because of the high mutual admittance between the
ports. This fact improves the ability of each loop antenna to de-
tect an incident wave. This phenomenon can be interpreted as
the supergain effect [26] obtained also in receive antenna ar-
rays, which exploit the noise spatial coupling of closely spaced
antenna elements for channel capacity enhancement. One can
observe that the external noise correlations at ports 1,2 and ports
3,4 are higher than the corresponding LNA noise correlations.
Therefore the LNA noise regularizes the total noise covariance
matrix, resulting in a lower supergain effect. Obviously, the su-
pergain effect fades when the LNA noise power increases.

The TLV antenna array was simulated for different SNRs
using two estimators:

1. A matched ML estimator—the estimator described in (22),

which utilizes the noise coupling for DOA estimation;

2. A mismatched ML estimator—the ML estimator described
in (22), which assumes white measurement noise, i.e.,
N; = 021, where I, is the identity matrix of dimension
L, and o? is the ports noise current variance.

In the simulations for the configuration described above, a cir-
cular polarized incident signal from various azimuth angles, ¢,
was considered. The dependence of the estimation performance
on ¢ was found to be minor. Thus, ¢ = 0° is used in all simu-
lations in this subsection.

Fig. 4 shows the root-mean-square error (RMSE) for DOA
estimation versus SNR for the above two estimators. The SNR
in the simulations is defined as

1

SNR =10log <§ ||U(¢)E||2>. (31)
The CRLB is also shown for reference. This figure shows that
the mismatch in the spatial noise statistics degrades the overall
estimation performance of the ML estimator in comparison to
the matched ML estimator where the asymptotic performance
degradation is about 1.8 dB, which means that the required SNR
to obtain a given DOA estimation RMSE is higher by 1.8 dB.
The results demonstrate the capability of the proposed antenna

A _
Ny =KB 0 0 0.33 0.07 (30) to estimate the source DOA, ¢. At low SNRs, the ML curves
0 0 0.07 0.33 are lower than the CRLB curve, because the DOA search range
114 — 5425 —35+ 58075 0 0
| —3545805 114 — 5425 0 0
Zp = 0 0 114 — 5425 —35+ 5805 7)
0 0 —35+ 5805 114 — 542y
1.79 1.62 4 0.045 0 0
B _ 1.62 — 0.045 1.61 0 0
N = KB 0 0 179 1.62+0.04j (29)
0 0 1.62 — 0.044 1.61
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Fig. 4. Source localization performance using the TLV antenna array.
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Fig. 5. CRLB curves for DOA estimation with incident signals of vertical and
horizontal polarizations, with and without noise coupling, using the TLV an-
tenna array.

of the ML estimators is limited to (—7 /2, 7/2). This limited
search range can be interpreted as additional prior information,
which becomes significant at low SNRs, while it is insignificant
at high SNRs. On the other hand, the CRLB does not take into
account this prior information.

Fig. 5 shows the CRLB curves for DOA estimation of the
array for two different cases: a physical array with coupled noise
versus a theoretical array with spatial white noise. These curves
are obtained separately for vertically polarized and horizontally
polarized incident signals. The following conclusions are de-
duced from the figure.

* The noise coupling improves the DOA estimation perfor-

mance for vertically polarized signals by 7.6 dB.

* The noise coupling degrades the DOA estimation perfor-

mance for horizontally polarized signals by 2.6 dB.

One may conclude that the noise coupling may cause signif-
icant performance variations of the TLV antenna. Accordingly,
the noise coupling is an important factor in the DOA estimation
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Fig. 6. The likelihood function for source localization: 1) signal without inter-
ference noise effect, 2) interference noise only, 3) signal with interference noise
(mismatched model), and 4) signal with interference noise (matched model).

performance and has to be taken into consideration in the an-
tenna design process.

In order to demonstrate the effect of the external noise on
source localization, the likelihood function [whose logarithm is
given in (20)] is evaluated for different cases. In all cases, the re-
ceiver center frequency and bandwidth are 900 MHz and 1 MHz,
respectively, and the environmental noise temperature distribu-
tion is described in (28). In the first case, the scenario of a single
source at ¢ = 0° and # = 90° is considered. In this scenario,
the received signal strength is —120 dBm. In the second case,
the signal is removed, and an interferer noise temperature of

| 5000°K, 85° <6 <90° 35° < ¢ < 55°
T(6,¢) = {OOK, otherwise

is added. In the third and fourth cases, the signal and the in-
terference noise sources from the previous cases are combined.
In the fourth case, the interferer noise current covariance ma-
trix is taken into account by the ML estimator (matched case),
while in the third case it is ignored (mismatched case). Fig. 6
shows the normalized likelihood function for the four cases de-
scribed above. One can observe that in the first two cases, the
likelihood function is maximized at ¢) = 0° for the signal and at
¢ = 45° for the interference noise, as expected. In the third case
(signal and interferer with modeling mismatch), the likelihood
function peak moves, and a bias error of about 8° is introduced.
In the fourth case, the likelihood function peak returns back to
¢ = 0°, as desired.

V. CONCLUSION

In this paper, an approach for evaluating the covariance ma-
trix of the noise currents at the ports of a wire antenna array
was presented. This approach takes into consideration the noise
coupling between the antenna element ports. The obtained co-
variance matrix was used to derive the CRLB for source local-
ization with a general antenna array and arbitrary polarized sig-
nals. Exploration of the statistical noise coupling behavior has
two major contributions. The first contribution is important for
the implementation of optimal localization algorithms, which
are matched to the noise statistical characteristics. The second
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contribution is important for obtaining accurate performance
evaluation tools in the presence of noise coupling. A numer-
ical example of a two-dipole antenna array was presented to
illustrate the noise coupling effect with passive loads. An ad-
ditional numerical example of a two loop vector antenna array
confirmed the fact that the knowledge of the noise current co-
variance matrix is crucial for achievement of optimal estimation
performance.
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