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Abstract
Because of confinement phenomena, semiconductorquantum dots show typical
atomic properties such as discrete energy levels and shell structures. The
energy eigenstates are described based on the Schrödinger-like equation for
the electronic envelope wavefunctions. From the point of view of fundamental
studies, the reduction of dimensionality in microwave ferrites brings into play
new effects, which should be described based on the quantized picture and
demonstrate, as a fact, the properties of artificial atomic structures. The
intermediate position of magnetic-dipolar (or magnetostatic) oscillations in
ferrite samples between ‘pure’ electromagnetic and spin-wave (exchange-
interaction) processes reveals the very special behaviour of geometrical effects.
In view of recent studies on the local-field effects for subwavelength systems,
some aspects of magnetic-dipolar oscillations in a normally magnetized
ferrite disc should be re-considered based on macroscopically quantized
methods. The purpose of this paper is to develop macroscopically quantized
phenomenological models for magnetostatic-wave ferrite discs based on the
Schrödinger-like equation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetostatic (MS) mode characterization in ferrite samples appears to be a relatively
straightforward and old problem in magnetism. Some aspects, however, show very interesting
features of such oscillations, which demand macroscopically quantized methods for clearer
understanding and new implementation. Among these aspects there are the atomic-like spectral
characteristics in normally magnetized thin-film ferrite discs. In the last few years, there has
been renewed interest in high frequency dynamic properties of finite size magnetic structures.
In a series of new publications, confinement phenomena of high-frequency magnetization
dynamics in magnetic particles have been the subject of much experimental and theoretical
attention (see [1] and references therein). In particular, these works are devoted to the important
study of localized spin-wave spectra, but do not focus on the energy eigenstates of a whole
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ferrite-particle system. The localization of spin-wave modes considered in these papers do
not provide any mechanism of macroscopic quantization similar to semiconductor quantum
wells. Until now there have been no (to the best of our knowledge) phenomenological models
of a ferrite particle with high-frequency magnetization dynamics which use the effective-mass
approximation and the Schrödinger-like equation to analyse the energy eigenstates of a whole
ferrite-particle system.

Multiresonance magnetic oscillations in small ferrite spheres excited by external RF
magnetic fields were experimentally observed for the first time by White and Solt in 1956 [2].
Subsequently, experiments with other forms of ferrite specimen were carried out. Without
intending to survey such experiments, we would like to call the reader’s attention to the
fundamental difference between the experimental absorption spectra of the sphere-form [2]
and the disc-form ferrite resonators [3, 4]. The δ-functional character of the multi-resonance
spectra one can see in the case of a ferrite disc resonator leads to a clear conclusion that the
energy of a source of a DC bias magnetic field is absorbing ‘by portions’ or, in other words,
discretely. By contrast, the spectrum of a ferrite sphere is characterized by very few and very
‘spreading’ absorption peaks. The effect of conversion of electromagnetic power into MS-
wave power spectra (with differences of the order of 2–4 in the wavelength) in non-spherical
ferrite samples has been the topic of serious experimental and theoretical investigations [4–
6]. The main aim of these works was to show that the multi-resonance MS oscillations
could chiefly be observed due to the non-uniform internal DC magnetic field in disc-shaped
resonators. Recently, we have shown that MS oscillations in a small ferrite disc resonator
can be characterized by a discrete spectrum of energy eigenstates [7]. This fact allows the
analysis of the MS oscillations in a similar way to quantum mechanical problems. It gives
a basis for a clearer understanding of the nature of the observed multi-resonance spectrum.
From this standpoint, the role of the non-uniform DC magnetic field should be considered as
an additional factor that, certainly, can lead to distortion of an initial discrete spectrum in a
ferrite disc but does not imply a fundamental character.

Ferrite MS-wave samples are well localized in space, their extension is assumed to be
much smaller than the variation length of the electromagnetic field. In fact, experiments [2–4]
demonstrate the effects of interaction of microwave-cavity electromagnetic fields with a point-
like object. So a MS-wave ferrite resonator interacts with a local, or quasistatic, cavity field.
Quasistatics means that the characteristic specimen size l is much less than the free-space
electromagnetic wavelength λ ∼ c/ω [8]. The main origin of the problem (which we are
faced with in our attempts to give a proper explanation of the multiresonance experimental
spectra) can be attributed to the crucial role played by the evanescent components of the field
(the MS field) in the region close to the sample. This is the problem related to non-radiative
energy transfers in the quasistatic region of the cavity field. In complete analogy with the
tunnel effect for electrons, these evanescent components can lead to magnetic tunnel effects.
In the quasistatic range (of the cavity RF field), the accurate treatment of evanescent waves
requires one to deal carefully with the boundary conditions and to include appropriate magnetic
frequency responses. One has effects involving a high density of evanescent waves existing in
the quasistatic region of the cavity field.

The optical local-field response of optical microresonators and semiconductor quantum
dots is now an elaborated subject (see [9] and references therein). The optical susceptibility of
semiconductor quantum dots is found from the light–matter coupling Hamiltonian and quantum
confinement effects splitting the bulk material properties into a series of discrete energy levels.
MS oscillations in ferrite particles exist due to the essential temporal dispersion of magnetic sus-
ceptibility [8]. Similar to semiconductor quantum dots showing an optical local-field response,
point-like ferrite particles are resonant scatterers showing the cavity local-field response.
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The statement that confinement phenomena for MS oscillations in a normally magnetized
ferrite disc demonstrate typical atomic-like properties of discrete energy levels could be
illustrated by an analysis of experimental absorption spectra. The main feature of multi-
resonance line spectra in [3, 4] is the fact that high-order peaks correspond to lower quantities
of the bias DC magnetic field. Physically, the situation looks as follows. Let H (A)

0 and H (B)
0 be,

respectively, the upper and lower values of a bias magnetic field corresponding to the borders of
a region. We can estimate the total depth of a ‘potential well’ as: �U = 4πM0(H

(A)
0 − H (B)

0 ),
where M0 is the saturation magnetization. Let H (1)

0 be a bias magnetic field corresponding to
the main absorption peak in the experimental spectrum (H (B)

0 < H (1)
0 < H (A)

0 ). When we
put a ferrite sample into this field, we supply it with the energy 4πM0 H (1)

0 . To some extent,
this is a pumping-up energy. Starting from this level, we can excite the entire spectrum from
the main mode to the high-order modes. As the value of the bias magnetic field decreases, the
‘particle’ obtains the higher levels of negative energy. One can estimate the negative energies
necessary for transitions from the main level to upper levels. For example, to have a transition
from the first level H (1)

0 to the second level H (2)
0 (H (B)

0 < H (2)
0 < H (1)

0 < H (A)
0 ) we need the

density energy surplus �U12 = 4πM0(H
(1)
0 − H (2)

0 ). The situation resembles increasing the
negative energy of the hole in semiconductors when it ‘moves’ from the top of a valence band.
In classical theory, negative-energy solutions are rejected because they cannot be reached by a
continuous loss of energy. But in quantum theory, a system can jump from one energy level to
a discretely lower one, so the negative-energy solutions cannot be rejected out of hand. When
one continuously varies the quantity of the DC field H0, for a given quantity of frequency
ω, one sees a discrete set of absorption peaks. This means that one has discrete-set levels of
potential energy. The line spectra appear due to the quantum-like transitions between energy
levels of a ferrite disc-form particle. As a quantitative characteristic of permitted quantum
transitions there is the probability, which defines the intensities of the spectral lines. The
quantized-like transitions for MS oscillations in a normally magnetized thin-film ferrite disc
were demonstrated in recent experimental studies [10].

In [11] we showed that because of the discrete energy eigenstates of MS oscillations
resulting from structural confinement in a ferrite disc, one can describe the oscillating system
as a collective motion of quasiparticles—the light magnons. The light magnon distribution is
defined as the probability density distribution function. The confined phenomena of the light
magnon oscillations in normally magnetized thin-film ferrite discs demonstrate very specific
properties of artificial atomic structures. One of these specific properties is the eigen electric
moments (the anapole moments) accompanying MS oscillations. Such eigen-electric-moment
oscillations were predicted in [12] and experimentally verified in [10]. Another aspect of
the light-magnon motion character is the microwave magnetoelectric (ME) effect observed in
recent experiments [13].

In this paper we develop macroscopically quantized phenomenological models for MS
oscillations in a ferrite disc resonator. In view of the correct formulation of the energy
orthogonality relations, we analyse the problem of boundary conditions and mutual matching
between the frequency and magnetic-field spectra. We discuss the question of possible
quantization of magnetization for MS oscillations. The final part of the paper is devoted
to the MS-mode spectral problem in a ferrite disc with a non-homogeneous DC magnetic field.

2. Resonance frequencies of a ferrite disc resonator

A model of a normally magnetized open ferrite resonator is shown in figure 1. This is a
ferrite disc without any perfect electric or perfect magnetic walls. Since the disc has a small
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Figure 1. A normally magnetized open ferrite disc resonator.

thickness/diameter ratio, separation of variables is possible. In the case of such an assumption,
we exclude, in fact, the influence of the edge regions.

In a ferrite-disc resonator with a small thickness to diameter ratio, the monochromatic
MS-wave potential function ψ is represented as [7]:

ψ =
∑

p,q

A pq ξ̃pq(z)ϕ̃q(ρ, α), (1)

where A pq is the MS mode amplitude, ξ̃pq(z) and ϕ̃q(ρ, α) are dimensionless functions
describing, respectively, the ‘thickness’ (z coordinate) and ‘in-plane’, or ‘flat’ (radial ρ and
azimuth α coordinates), MS modes. For a certain type of ‘thickness’ mode (in other words,
for a given quantity p), every ‘flat’ mode is characterized by its own function ξ̃q(z).

Because of separation of variables, one can impose independently the electrodynamical
boundary conditions—the continuity conditions for the MS potential ψ and for the normal
components of the magnetic flux density—on a lateral cylindrical surface (ρ = R, 0 � z � h)
and plane surfaces (ρ � R, z = 0, z = h). As a result, we have to solve a system of the
following two equations:

tan(β(F)h) = −2
√−µ
1 + µ

(2)

and

(−µ) 1
2

J ′
ν

Jν
+

K ′
ν

Kν

− µaν

|β(F)|R = 0. (3)

Hereµ andµa are, respectively, the diagonal and off-diagonal components of the permeability
tensor, β(F) is the wavenumber of a MS wave propagating in a ferrite along the bias magnetic
field, Jν, J ′

ν, Kν and K ′
ν are the values of the Bessel functions of order ν and their derivatives

(with respect to the argument) on a lateral cylindrical surface (ρ = R, 0 � z � h).
Equations (2) and (3) correspond, respectively, to characteristic equations for MS waves

in a normally magnetized ferrite slab [14] and in an axially magnetized ferrite rod [15]. To
obtain eigenfrequencies of a ferrite disc resonator one has to solve a system of two equations,
equations (2) and (3), for given values of h, R and ν. The solutions for oscillating MS modes
take place only for µ < 0. This means that the admissible frequency region is restricted by
frequencies ω1 and ω2 (ω1 � ω � ω2), where ω1 = γ Hi and ω2 = γ [Hi(Hi + 4πM0)]1/2.
Here γ is the gyromagnetic ratio and Hi is the internal DC magnetic field. It becomes clear (see
equation (3)) that one should have different resonances for the left-hand and the right-hand
circularly polarized oscillations (having different signs of ν).
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Figure 2. Resonance frequencies of a ferrite disc resonator. (a) The graphical solutions of
equations (2) and (3). (b) The spectrum of resonance peaks for a fundamental ‘thickness mode’.

Figure 2(a) illustrates the graphical solutions of equations (2) and (3) obtained for a set
of ‘thickness modes’ (p numbers) and different ‘in-plane (flat) modes’ with ν = ±1 and with
a number of radial variations (q numbers). An analysis was made using the disc data given
in [4]: 4πM0 = 1792 G, 2R = 3.98 mm, h = 0.284 mm. Calculations were made for the
bias DC magnetic field H0 = 5.02 kOe. One can see that in our case of a ferrite disc with
a small thickness/diameter ratio, the spectrum of ‘thickness modes’ is very ‘rare’ compared
to the ‘dense’ spectrum of ‘flat modes’. The entire spectrum of ‘flat modes’ is completely
included in the wavenumber region of a fundamental ‘thickness mode’. This means that the
spectral properties of a resonator can be entirely described based on consideration of only a
fundamental ‘thickness mode’. The spectrum of resonance peaks corresponding to solutions
of equations (2) and (3) for a fundamental ‘thickness mode’ is shown in figure 2(b) by vertical
lines. There is clear evidence for a strong difference in positions of peaks with positive and
negative signs of ν. Such a difference of resonances for the left-hand and the right-hand
circularly polarized oscillations reveals a problem for MS-mode orthogonality relations and
difficulties in the analysis of the energy spectra.

3. Energy spectra of a ferrite disc resonator

MS oscillations in a one-dimensional linear structure are completely described by scalar
wavefunction ψ . In the case of a lossless structure, one has the following differential
equation [11]:
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a(1)(z)
∂2ψ(z, t)

∂z2
+ a(2)(z)ψ(z, t) = ∂ψ(z, t)

∂ t
. (4)

This is the Schrödinger-like equation. One can consider equation (4) as the stationary-state
equation.

An axially magnetized ferrite cylinder is a quasi one-dimensional linear structure. For
parameters not dependent on a longitudinal coordinate, MS oscillations are described by
equation (4) with coefficients a(1) and a(2) independent of z. The feature of such a waveguide
structure is the fact that there are two cutoff frequencies ω1, ω2. For a given frequency in the
frequency region between the cutoff frequencies (ω1 � ω � ω2), one has a discrete spectrum
of propagating MS modes [7, 15]. For a monochromatic process (ψ ∼ ei(ωt−βz)) we have an
infinite set of differential equations (that are all similar to equation (4)) written for waveguide
modes. For the nth waveguide mode we obtain from equation (4) for frequency ω:

−a(1)n β2
n + a(2)n = iω. (5)

For harmonic processes, coefficients a(1) and a(2) should be imaginary quantities. There is,
however, certain vagueness as to how to determine these coefficients.

Let us represent a MS-potential function as a quasi-monochromatic quantity:

ψ = ψ(max)(z, t)ei(ωt−βz), (6)

where the amplitudeψ(max)(z, t) is a smooth function of the longitudinal coordinate and time.
For the quasi-monochromatic MS-wave process of mode n, the average energy of the MS
waveguide section, restricted by z = z1, z2, is characterized as [7, 11]

W̄n = − 1

4a(1)n

iωµ0

∫ z2

z1

∫

S
ψnψ

∗
n ds dz + C, (7)

where C is an arbitrary quantity not dependent on time. It is possible to normalize the process
in a supposition that constant C is equal to zero. One can see that coefficient a(2)n is not
included in the expression of average energy. The only coefficient included in this expression
is coefficient a(1)n . Another important conclusion following from equation (7) is that for any
coefficient a(1)n the energy can be normalized with respect to the known ψn eigenfunctions.

The fact that coefficient a(2) is not included in the expression of average energy gives us
the possibility to consider different cases based on certain physical models. One can see that
when a(2) ≡ 0, equation (4) resembles the Schrödinger equation for ‘free particles’. For the
case of a(2)n ≡ 0, coefficients a(1)n are found as (see equation (5)):

a(1)n = − iω

β2
n

. (8)

We define a notion of the normalized average MS energy of mode n as the average (on the
RF period) energy of the MS waveguide section with unit length and unit characteristic cross
section. This energy for a mode with unit amplitude is expressed based on equations (7) and
(8) as:

E (lm)
n = 1

4 gµ0β
2
n , (9)

where g is the unit dimensional coefficient. The superscript (lm) used in equation (9) means
the ‘light magnon’ [7, 11].

The MS-potential wavefunctions show the possible eigenstates of a system. It follows that
the energy quantization (described by the MS-potential properties) is regarded to a collective
effect of quasiparticles. When dealing with quasiparticles, it is standard to introduce the
concept of an ‘effective mass’, i.e. a quantity with dimension of mass, characterizing dynamic
properties of a quasiparticle. A quasiparticle may behave differently in different conditions,
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so that ‘effective masses’ proliferate. The process of MS-wave propagation is considered
as the motion process of certain quantum quasiparticles having quantization of energy and
characterized by certain effective masses. We call these quasiparticles the light magnons. The
meaning of this term arises from the fact that the effective masses of the light magnons should
be much less than the effective masses of the (real, ‘heavy’) magnons—the quasiparticles
existing due to the exchange interaction. The states of the light magnons are described based
on the so-called translational eigenfunctions. For these translational eigenfunctions energy
is proportional to a squared wavenumber [16]. When we juxtapose equation (4) with the
Schrödinger equation for ‘free particles’ (a(2) ≡ 0), we get the following expression for an
effective mass of a light magnon:

(
m(lm)

eff

)

n
= h̄

2

β2
n

ω
. (10)

This expression looks very similar to an effective mass of the (real, ‘heavy’) magnon for spin
waves with the quadratic character of dispersion [17].

In an infinite-ferrite-rod MS-wave waveguide for given frequency ω′ (ω1 � ω′ � ω2),
one has a flow of quasiparticles with different effective masses and different kinetic energies.
For another frequency ω′′ �= ω′ (ω1 � ω′′ � ω2) we have a flow of other quasi-particles
differing from previous ones by effective mass and kinetic energy. At a certain frequency,
the total energy of non-interacting quasiparticles is equal to a sum of energies of separate
quasiparticles:

E (lm)
tot =

∑

n

E (lm)
n . (11)

Since the spectrum of ‘thickness modes’ is very ‘rare’ compared to the ‘dense’ spectrum of
‘flat modes’, the spectral properties of a ferrite disc resonator with a small thickness/diameter
ratio can be entirely described based on consideration of only a fundamental ‘thickness mode’.
To find the average energy of the MS mode q in a ferrite disc, one can extend equation (7) as
follows:

W̄q = −1

4
iωµ0

∫

S

[
1

(a(1)q )(D)

∫ 0

−∞
ψqψ

∗
q dz

+
1

(a(1)q )(F)

∫ h

0
ψqψ

∗
q dz +

1

(a(1)q )(D)

∫ ∞

h
ψqψ

∗
q dz

]
ds + C, (12)

where superscripts (D) and (F) mean, respectively, the dielectric (−∞ � z � 0; h � z � ∞)

and ferrite (0 � z � h) regions. It becomes clear that only the term corresponding to the ferrite
region (where we have propagating MS waves) gives a real quantity. For a given quantity H0,
in the case of an infinite ferrite rod, we have a set of transitionally moving light magnons. For
a given quantity H0, in the case of a ferrite disc resonator, there is a set of light magnons having
reflexively-translational motion between the planes z = 0 and h. Since at a certain frequency
there are two waves propagating forward and back with respect to the z-axis, the average energy
will be twice that of the energy expressed by equation (9). One has the following expression
for the light-magnon average energy of ‘flat’ mode q in a normally magnetized ferrite disc:

E (lm)
q = 1

2 gµ0(β
(F)
q )2, (13)

where β(F)q is a MS-wave propagation constant in a ferrite of mode q .
With consideration of the MS-wave process as the motion of quasiparticles and the

definition of effective masses of these quasiparticles, one cannot, however, calculate the energy
spectra because of an ambiguity arising from differences in positions of peaks with positive
and negative signs of ν. Such a difference, shown in figure 2, reveals a contradiction in the
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formulation of the orthonormality relations. In the analysis, it should be supposed that function
ϕ̃ is a single valued function for angleα varying from 0 to 2π . So, before starting computations
of these energy levels one should overcome the difficulties related to the difference in positions
of peaks with positive and negative signs of ν, mentioned above in section 2.

The homogeneous electrodynamics boundary conditions at ρ = R demand continuity for
ϕ̃ and continuity for the radial component of the magnetic flux density. The last boundary
condition is described as:

µ

(
∂ϕ̃

∂ρ

)

ρ=R−
−

(
∂ϕ̃

∂ρ

)

ρ=R+

= −µa

R
ν(ϕ̃)ρ=R− . (14)

This is a special boundary condition on the border ‘in-plane’ contour L. Really, the ‘flat’
functions ϕ̃ determined by the Bessel functions should be degenerated with respect to a sign of
ν. At the same time, in accordance with the first-order differential equation (14), the functions
ϕ̃ are dependent on the sign of ν. Because of the boundary conditions functions ϕ̃ cannot
be considered as single-valued functions. At the same time, following axioms of quantum
mechanics [16], each state function, as well as a superposition of the state functions must be
a single-valued analytic expression satisfying the boundary conditions for the given system.
The fact that solution of our problem is dependent on both a modulus and a sign of ν raises a
question about the validity of the energy orthonormality relation for functions ϕ̃.

The energy orthonormality relations can be obtained based on the so-called essential
boundary conditions used in variational methods. Since a two-dimensional (‘in-plane’)
differential operator Ĝ⊥ [11] contains ∇2

⊥ (the two-dimensional, ‘in-plane’, Laplace operator),
a double integration by parts (the Green theorem) on S—a square of an ‘in-plane’ cross section
of an open ferrite disc—of the integral

∫
(Ĝ⊥ϕ̃)ϕ̃∗ dS, gives the following boundary condition:

µ

(
∂ϕ̃

∂ρ

)

ρ=R−
−

(
∂ϕ̃

∂ρ

)

ρ=R+

= 0. (15)

For operator Ĝ⊥, the boundary condition of the MS-potential continuity together with
boundary condition (15) are the essential boundary conditions [18]. When the essential
boundary conditions are used, the MS-potential eigenfunctions of operator Ĝ⊥ form a complete
basis in an energy functional space, and the functional describing an average quantity of
energy has a minimum at the energy eigenfunctions [18]. The boundary conditions of
the MS-potential continuity together with boundary condition (14) are the so-called natural
boundary conditions [18]. The possibility of using the functions from the complete energy
space when inhomogeneous boundary conditions take place is discussed in many variational
problems [18, 19]. The main feature of natural boundary condition (14) arises from the quantity
of an azimuth magnetic field. One can see that this is a singular field, which exists only in an
infinitesimally narrow cylindrical layer abutting (from the ferrite side) to the ferrite–dielectric
border. An azimuth magnetic field defines a surface magnetic current on the ferrite–dielectric
border. This current, being described by the double-valued functions, gives anapole moments
for MS oscillations in a ferrite disc [12].

We will calculate now the resonance peak positions in a ferrite disc resonator based on the
essential boundary conditions considered above. In this case of boundary conditions one does
not have the difference of resonances for the left-hand and the right-hand circularly polarized
oscillations. The resonance peak positions should be obtained based on the graphical solution
of equation (2) and the modified form of equation (3). The latter, taking into account the
essential boundary conditions, is represented as

(−µ) 1
2

J ′
ν

Jν
+

K ′
ν

Kν

= 0. (16)

The feature of this equation is the fact that at the point where µ = −1, one has an identity.
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f [GHz]

Figure 3. Resonance spectrum of a ferrite disc with respect to frequency (the essential boundary
conditions). (a) The graphical solutions of equations (2) and (16). (b) The spectrum of resonance
peaks for a fundamental ‘thickness mode’.

Figure 3(a) illustrates the graphical solutions of equations (2) and (16) obtained for the
main ‘thickness mode’ and different ‘in-plane (flat) modes’ calculated for Bessel functions
of order ν = 1 and with a number of radial variations (q numbers). An analysis was made
using the same data as for calculations shown in figure 2. At the frequency corresponding to
the quantity µ = −1 one has a break. The spectrum of resonance peaks corresponding to
solutions of equations (2) and (16) for a fundamental ‘thickness mode’ is shown in figure 3(b)
by vertical lines.

Usually in experiments the spectral properties of small ferrite resonators are exhibited
with respect to a quantity of bias magnetic field, remaining a quantity of frequency without
any variations. The graphical solutions of equations (2) and (16) obtained for the same data of
disc parameters as calculations in figure 3, but with respect to the DC magnetic field H0, are
shown in figure 4 for different quantities ν. The working frequency is ω

2π = 9.51 GHz. The
break takes place at the magnetic field where µ = −1.

For known quantities β(F)q (see figure 4), the energy levels can be calculated based on
equation (13). The positions of quantities E (lm)

q —the normalized energies of the light-magnon
collection—corresponding to different ‘flat modes’ were calculated and shown in [11]. The
modes are characterized by numbers q and quantities ν. The classification is the following.
For ν = 1, one has the energy levels for the dipole-type light magnon collection, for ν = 2,
the quadrupole-type light magnon collection, and for ν = 3 there is the hexapole-type light
magnon collection. Also in [11], effective masses of different-type light magnons, calculated
based on equation (10), are shown. MS-potential distributions with respect to axial, radial and
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A break at µ = –1

Figure 4. The graphical solutions of equations (2) and (16) with respect to the DC magnetic field
for the main ‘thickness’ and different ‘in-plane’ MS modes.

azimuth coordinates shown, respectively, in figures 5–7 of the paper illustrate the behaviour
of the light magnons in a ferrite disc resonator. In MS-wave processes, the MS-potential
function can be considered as the probability distribution function [7]. The probability density
distribution function ϕ̃ϕ̃∗ shows the light magnon distribution.

The energies found from equation (13) can be considered as ‘kinetic energies’. At the
same time, the fact that the spectral properties are exhibited with respect to quantities of a
bias magnetic field means variations of ‘potential energy’ of a ferrite sample. When one
continuously varies the quantity of the DC field H0, for a given quantity of ω, one sees a
discrete set of absorption peaks. This means that one has the discrete-set levels of potential
energy. It is a very crucial fact that the jumps between the potential levels are controlled
(are governed) by the discrete transitions between the quantum states of the light magnons.
For known quantities H (A)

0 and H (B)
0 , corresponding to the upper and lower values of a bias

magnetic field region where µ < 0, we calculate the total depth of a ‘potential well’. For
working frequency ω

2π = 9.51 GHz and saturation magnetization 4πM0 = 1792 G—the data
of the Yukawa and Abe’s experiments [4]—we have:

�U = 4πM0(H
(A)
0 − H (B)

0 )

= 780 Oe × 1792 G = 1.4 × 106 ergs cm−3 = 14 × 104 J m−3. (17)

The first three levels (q = 1, 2, 3) of negative potential energy, calculated as U =
4πM0(H0|q=1,2,3 − H (A)

0 ), where the quantities H0|q=1,2,3 are found from the first-three-peak
positions in the magnetic-field spectra (see figure 4), are shown in figure 8 for ν = 1. For
every level of potential energy, the corresponding quantities of the light-magnon normalized
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Dielectric Ferrite Dielectric

h

Figure 5. MS-potential distribution with respect to an axial coordinate.

energies are pointed out. The quantized quantities of the light magnon kinetic energy take
place only on certain discrete levels of potential energy. Based on the above analysis, we can
find certain appropriateness between the light-magnon kinetic energy levels and the potential
energy levels. Such appropriateness between the E (lm)

q and |Uq | levels is illustrated in figure 9
for different types of light magnon.

4. Correlation between the frequency and magnetic-field spectra in a ferrite disc
resonator

In a general consideration, the physical justification for definition of the energy levels in a ferrite
disc should be based on the notion of the density matrix used in quantum mechanics [16, 20].
As we discussed above, in an infinite ferrite rod theψ function can be expanded by membrane
functions ϕ̃ of MS-wave waveguide modes for a monochromatic process (ψ ∼ eiωt ). In this
case we have an infinite set of differential equations (that are all similar to equation (4)) written
for waveguide modes. This is not the situation one may see in a ferrite disc resonator.

Let us consider the case of a constant-value bias magnetic field H0. Every resonance mode
in figure 3 is described by equation (4). However, since every resonance peak is characterized
by its own frequency, one can suppose that there are no complete-set membrane functions ϕ̃
of MS modes. For a given quantity of bias magnetic field H0, let us introduce the following
function�(ωa, ωb) written for the ‘in-plane’ functions ϕ̃:

�(ωa, ωb) =
∫

S
ϕ̃∗(ωa)ϕ̃(ωb) ds, (18)

where ωa,b are frequencies of some two resonance peaks (the peaks numbered as a and b)
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Figure 6. MS-potential distributions with respect to a radial coordinate.

in figure 3. By analogy with the quantum mechanics problems, we will call function�(ωa, ωb)

the density matrix. Evidently the density matrix is characterized by the Hermitian property:

�∗(ωa, ωb) = �(ωa, ωb). (19)

Diagonal elements of the density matrix are defined as:

�(ωa, ωa) =
∫

S
|ϕ̃(ωa)|2 ds. (20)

In accordance with figure 3 one can see that the number of a resonance peak corresponds to
the number of an ‘in-plane’ function. So instead of equation (18) one should write:

�m,n(ωm, ωn) =
∫

S
ϕ̃∗

m(ωm)ϕ̃n(ωn) ds. (21)

There is no foundation for stating a priori that, for a given quantity of bias magnetic field H0,
when frequencies ωm and ωn are different (see figure 3), functions ϕ̃m and ϕ̃n are mutually
orthogonal.

Since solutions of a system of equations (2) and (16) are found with respect to the frequency
(with the constant-value bias field), or with respect to the bias field (with the constant-value
frequency), one should have a mutual matching between the frequency (see figure 3) and the
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Figure 7. MS-potential distributions with respect to an azimuth coordinate.

magnetic-field (see figure 4) spectra. This matching is illustrated in figure 10 for the first
three peaks (q = 1, 2, 3) of the case of ν = 1. In figures 10(a), (b), and (c) we see the peak
positions for the frequency spectrums, respectively, at H0|q=1,ν=1, H0|q=2,ν=1, and H0|q=3,ν=1

(see figure 4). In fact, we sequentially replace every peak from the frequency spectrum at the
same frequency f ′ by a sequence of the DC magnetic field values.

For the situation shown in figure 10 (when we sequentially replace every peak from the
frequency spectrum at the same frequency (ωm = ωn = ω′) by a sequence of the DC magnetic
field values), the functions ϕ̃m and ϕ̃n are mutually orthogonal. This statement is evident. In
fact, in accordance with the above consideration, any ‘in-plane’ eigenfunctions are mutually
orthogonal for the monochromatic process. This means that for the magnetic-field (see figure 4)
spectrum of a ferrite disc, the ψ function can be expanded by complete-set ‘flat’ functions ϕ̃.
So for the frequency spectrum the eigenfunctions are also mutually orthogonal.

5. The case of a(2) �= 0

In the above consideration we showed an analysis of the steady-state functions. To analyse
transitions between the steady-state energy levels one has to solve equation (4) in the time
and space domains. This very interesting problem should be a subject for future investigation.
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Figure 8. First three levels of potential energy (ν = 1).

Nevertheless, there are some aspects of the transitional regimes one can discuss within the
framework of this paper.

The average energy of a ferrite disc can be expressed by equation (13) only for a given
quantity of a bias magnetic field. With variation of the quantity of the bias magnetic field,
one has variation of the ‘potential energy’ of a ferrite sample. In this case, we should take
a(2) �= 0 in equation (4). With a clear similarity to the Schrödinger equation, one can see that
coefficient a(2)(z) in equation (4) corresponds to the potential-energy function. So, considering
equation (4) as an operator equation with respect to a wavefunctionψ , one can conclude that the
first term in the left-hand side of equation (4) describes an operator of kinetic energy, while the
second term describes the potential energy operator. Since the coefficient a(2)n in equation (5)—
the potential energy operator—is dependent on neither frequency ω nor wavenumber βn, one
has two ways to define coefficient a(1)n : by means of taking derivatives over (β2

n) in equation (5),
or by means of taking derivatives over ω in equation (5). As a result, one can write:

a(1)n = −i
1

d(β2
n )/dω

= −i
1

2

d2ω

dβ2
n

. (22)

The above equality is valid when one assumes that β2
n is proportional to ω. The behaviour of

quasiparticles characterized by such a coefficient a(1) differs from the behaviour of the light
magnons. Such quasiparticles we will conventionally call the ‘quasimagnons’ (qm). One
obtains the following expression for the normalized average MS energy of ‘flat mode’ q , in
the case of ‘quasimagnons’:

E (qm)
q = − 1

2a(1)q

iωµ0g = 1

2
ωµ0g

d
(
β(F)q

)2

dω
. (23)

Based on the definition of the effective mass for quasiparticles in a crystal [21], one can
introduce the notion of an effective mass of a ‘quasimagnon’. For MS mode q the effective
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Figure 9. Appropriateness between the E(lm)q and |Uq | levels: (a) for dipole-type light magnons
(ν = 1), (b) for quadrupole-type light magnons (ν = 2), for hexapole-type light magnons (ν = 3).

mass of a ‘quasimagnon’ is expressed as:

1(
m(qm)

eff

)

q

= 1

h̄

d2ω

d
(
β
(F)
q

)2 . (24)

In accordance with the dispersion properties of MS waves in an axially magnetized ferrite
rod [15], one can see that an effective mass of a ‘quasimagnon’ is negative. However, an
average energy E (qm)

q expressed by equation (23) should be a positive quantity. This stipulates
the conclusion that to describe the negative-mass ‘quasimagnons’ one should use a notion of
negative frequencyω. The ‘negativeness’ of frequencyω is clearly demonstrated by figure 10.
One can see that a spectrum ‘moves’ in a negative direction on the frequency axis as we pass
from the ‘top value’ of the bias magnetic field.

It is possible to show that the levels calculated based on equation (23) do not give a
regular spectral picture. The eigenfunctions corresponding to the energy eigenstates defined
by expression (23) are not mutually orthogonal. The transitional functions considered above
demonstrate some interesting physical aspects, but the real analysis, as we discussed above,
should be based on the time- and space-domain calculations.
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Figure 10. Mutual matching between the frequency and the magnetic-field spectra.

6. On the quantization of magnetization for MS oscillations

We have shown that in a ferrite disc resonator every MS-wave oscillating mode is characterized
by a certain energy level. Now we come to the question: what is the correlation between the
energies of the MS oscillations analysed above and the density of magnetization energy?

Quantization of the magnetization of a whole ferrite-particle systemmay take place if there
is a spectral problem for a magnetization field or if a magnetization field can be expressed
by the compete-set scalar functions. Both these cases do not occur for MS oscillations in a
normally magnetized ferrite disc. For the biasing magnetic field directed along the z-axis, the
RF magnetization in the MS description is written in cylindrical coordinates as [17]:

mρ = −χ ∂ψ
∂ρ

− iχα
1

ρ

∂ψ

∂α
,

mα = iχα
∂ψ

∂ρ
− χ

1

ρ

∂ψ

∂α
,

mz = 0,

(25)

where χ and χa are, respectively, diagonal and off-diagonal components of the susceptibility

tensor
↔
χ . For a dominant ‘thickness’ mode described by the known function ξ̃ (z) and q ‘flat’

mode described by ϕ̃q(ρ, α) (see equation (1)), one has:

(mρ)q = Aq ξ̃

(
−χ ∂ϕ̃q

∂ρ
− iχα

1

ρ

∂ϕ̃q

∂α

)
,

(mα)q = Aq ξ̃

(
iχα

∂ϕ̃q

∂ρ
− χ

1

ρ

∂ϕ̃q

∂α

)
,

(mz)q = 0.

(26)
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Based on these expressions, one can introduce the corresponding ‘in-plane’ differential
operators:

m̂ρ = −χ ∂

∂ρ
− iχα

1

ρ

∂

∂α
,

m̂α = iχα
∂

∂ρ
− χ

1

ρ

∂

∂α
.

(27)

Now we define the operator:

m̂2
⊥ = m̂2

ρ + m̂2
α. (28)

This operator is expressed as:

m̂2
⊥ = (χ2 − χ2

a )

(
∂2

∂ρ2
+

1

ρ2

∂2

∂α2

)
= γM0

(
∇2

⊥ − 1

ρ

∂

∂ρ

)
. (29)

Let us suppose, as a particular case, that a lateral cylindrical surface of a ferrite disc is
a perfect magnetic wall. In this case one has the same domains of definition of operators
m̂2

⊥ and ∇2
⊥. Unlike energy operator F̂⊥ [7], operator m̂2

⊥ is not proportional to the Laplace
‘in-plane’ operator ∇2

⊥. Evidently, operators F̂⊥ and m̂2
⊥ do not commute with each other. This

means that for every oscillating MS ‘flat’ mode q (with a dominant ‘thickness’ mode), energy
Eq described by the MS-potential function (see equation (13)) is not equal to the oscillating
energy of the RF magnetization in a ferrite sample. This also means that for every energy
eigenstate Eq , the value m2

q = (mρ)
2
q + (mα)

2
q is not a stationary-state quantity. One can

suppose that in accordance with equation (26), for every (normalized) MS-potential mode
there is a ‘magnetization mode’. But these ‘magnetization modes’ are not orthonormalized
ones. In other words, the energy of the magnetization does not belong to the orthonormal space
of energy. The fact that in our case we have quantization of MS energy (energy eigenstates
of MS oscillations) does not stipulate quantization of the magnetization energy in MS-wave
oscillations.

The above statement that one does not have quantization of the magnetization energy in
MS-wave oscillations can also be illustrated in another way. Let us suppose that operator
m̂2

⊥ has eigenvalues, which we denote as m2, and ‘flat’ scalar eigenfunctions ς̃ different from
function ϕ̃. In this case, we have the equation:

m̂2
⊥ς̃ = m2ς̃ (30)

or
∂2ς̃

∂ρ2
+

1

ρ2

∂2ς̃

∂α2
− m2

χ2 − χ2
a

ς̃ = 0. (31)

Here m2 = m2
ρ + m2

α is the quantity defining the density of the magnetization energy [17].
Because of cylindrical symmetry and the supposition that functions ς̃ and ϕ̃ might be at the
same azimuth symmetry, we have ς̃ ∼ e−iνα . Equation (30) is written as:

∂2ς̃

∂ρ2
− ν2

ρ2
ς̃ + Q2ς̃ = 0, (32)

where we have denoted:

Q2 = m2

χ2
a − χ2

. (33)

Now let us introduce a new real quantity n, which is defined by the following equation:

4n2 − 1

4
= ν2. (34)
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Based on equation (34) we rewrite equation (32) as:
∂2ς̃

∂ρ2
+

(
Q2 − 4n2 − 1

4ρ2

)
ς̃ = 0. (35)

One has the following solution for function ς̃ [22]:

ς̃ = constant
√
ρ Jn(Qρ)e

−iνα = constant
√
ρ J± 1

2

√
4ν2 +1(Qρ)e

−iνα. (36)

For the essential boundary conditions, functions ϕ̃, being expressed by Bessel’s functions,
are mutually orthogonal. There is no formal evidence of orthogonality of functions ς̃ .
Moreover, if one supposes that functions ϕ̃ form a complete set of scalar functions and that
operators m̂2

⊥ and ∇2
⊥ have the same domains of definition, another type of scalar function ς̃

cannot be the complete-set function.

7. The MS-mode spectral problem in a ferrite disc with non-homogeneous DC magnetic
field

It was supposed in our analysis that the internal DC magnetic field is homogeneous. In this case
one can really formulate the spectral problem. At the same time, because of the demagnetizing
effects, the internal DC magnetic field in a ferrite disc is essentially non-homogeneous. This
should have a strong affect on the spectral picture. An analysis of the spectral peak positions for
MS oscillations, taking into account the DC magnetic field non-homogeneity, was made in [4].
Based on the analysis in [4] one cannot, however, determine the character of eigenfunctions.
Therefore the ‘spectral portrait’ of MS oscillations in discs with non-homogeneous internal
DC magnetic field becomes unclear. So the physics of interaction of such a particle with the
external RF fields becomes absolutely unclear.

The absorption peaks are interpreted in [4] to be caused by magnetostatic waves
propagating radially across the disc with the DC-field dependent wavenumber in a plane of
a YIG film. The mode numbers are determined based on the well-known Bohr–Sommerfeld
quantization rule. In the definition of the spectral peak positions, the Yukawa and Abe model
gives good agreement with experiment. This fact is illustrated in figure 11 for MS modes
excited by the homogeneous RF magnetic field (here we use the Yukawa and Abe notation for
the odd mode numbers, so the Yukawa and Abe mode enumeration n = 1, 3, 5, . . . corresponds
to our dipole-type mode enumeration q = 1, 2, 3, . . . for ν = 1). In spite of such good
agreement, one cannot, however, rely on the Yukawa and Abe model to physically describe the
experimental situation of interaction of small ferrite discs with the external RF fields. When
being excited by the homogeneous RF magnetic field, a small ferrite disc should be considered
as a magnetic dipole with evident azimuth variations of the ‘in-plane’ MS-potential function. At
the same time, in the Yukawa and Abe model the ‘in-plane’ MS-potential-function distribution
is supposed to be azimuthally non-dependent.

For a normally magnetized thin-film ferromagnetic disc having small thickness-to-
diameter ratio, the demagnetizing field can be considered just as the radius-dependent function.
The internal DC magnetic field is determined in [4] as:

Hi(ρ) = H0 − Ha − 4πM0 I (ρ), (37)

where H0 and Ha are the applied and the anisotropy fields, respectively, and I (ρ) is the
demagnetizing factor. In this case, however, the standard cylindrical-symmetry problem for
MS modes cannot be solved. It is not difficult to show that when the permeability-tensor
components are dependent on a radial coordinate, the differential equation for the MS-potential
functions:

∇ · (↔µ(ρ) · ∇ψ) = 0 (38)

does not have separation of variables in a cylindrical coordinate system.
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Figure 11. Mode numbers with respect to applied magnetic field for different calculation methods.

The above spectral properties of MS modes in a ferrite disc were analysed based on the
disc data given in [4], but under the assumption of a homogeneous internal DC magnetic field
and without taking into account the anisotropy field. This means that the internal field was
calculated based on equation (37), but with Ha = 0 and I (ρ) = 1. In this case, however, the
spectral peak positions are rather far from the experimental peak positions. This is illustrated
in figure 11 by squares.

To take into account the internal field inhomogeneity preserving, at the same time, the
quantized ‘spectral portrait’ of MS oscillations in a ferrite disc, one has to develop certain
models of averaging. An evident criterion of acceptability of an averaging model should
be the fact that the total spectral picture (but not the separated modes) will be shifted to the
corresponding experimental-spectrumpicture. In [23], two averaging models were developed:

one based on radial averaging of the function
↔
µ(ρ) and another, the averaging of the function

I (ρ). The calculation results depicted in figure 11, by circles for I (ρ)average and by triangles

for
↔
µ(ρ)average, give good agreement with experimental peak positions.

8. Conclusion

Quantum effects are rarely observed through macroscopic measurements because statistical
averaging over many states usually masks all evidence of discreteness. One of the notable
exceptions is a quantum-mechanical effect in the magnetization of a macroscopic ferrite
sample: quantum coherence of magnetic-dipolar oscillations in thin-film ferrite discs. In quasi-
two-dimensional systems, the dipolar interaction can play an essential role in determining
the magnetic properties. In these systems the short-range exchange interactions alone are
not necessarily sufficient to establish a ferromagnetically ordered ground state. The theory
of the magnetic-dipolar mode spectra is based on the notion of magnetostatic-potential
wavefunctions. In the case of magnetic-dipolar oscillations in a normally magnetized thin-film
ferrite disc, magnetostatic-potential wavefunctions acquire a special physical meaning.
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Ferromagnetic resonators with MS oscillations can be considered in microwaves as point
(with respect to the external electromagnetic fields) particles. MS oscillations in a small ferrite
disc resonator can be characterized by a discrete spectrum of energy levels. This fact allows
the analysis of the MS oscillations in a similar way to quantum mechanical problems. Such a
macroscopically quantum picture underlies the physics of magnetoelectric discrete spectrums
recently observed in ferrite discs with surface electrodes [13]. A special interest in the energy
spectra of such a small structural element—artificial magnetic atoms—may be found in the
fields of microwave artificial composite materials, microwave spectroscopy, and, probably,
quantum computation [24].

From the above analysis it follows that the energy quantization (described by the MS
potential properties) can be regarded as a collective effect of quasiparticles—the light magnons.
In other words, the MS-wave phenomena in a special macrodomain—a ferrite disc resonator—
can be simply reduced to the case of a many-particle correlated system. The (real, ‘heavy’)
magnon mass in YIG is approximately six times larger than the free electron mass [17]. At
the same time, our estimations show that the light magnon effective mass m(lm)

eff (for YIG
disc resonators with parameters corresponding to the data of experiments [4]) is a very small
quantity, which is about 108 times less than the free electron mass. This fact is very clear since
MS oscillations take up an ‘intermediate position’ between the electromagnetic and exchange
oscillations. On the one hand, to describe these oscillations we can put the phenomenological
exchange constant equal to zero. On the other hand, the MS oscillations are described in
neglect of the electric displacement current in the Maxwell equations. So the quantity of the
light-magnon effective mass should be between the ‘heavy’-magnon effective mass (very big)
and zero mass of the photon.

As we have discussed in [7, 11] and analysed in detail in the present paper, because of the
possibility of formulating the energy eigenvalue problem for a normally magnetized flat ferrite
disc, one obtains a complete discrete spectrum of energy levels for a whole ferrite-particle
system. In such a case MS potential functions can be considered as the probability distribution
functions. The Schrödinger-like equation written for the MS-potential wavefunction shows
that in a ferrite disc resonator MS modes can diagonalize the total magnetic energy. One
of the main features of the problem is the fact that there are two types of spectra: (a) the
spectra obtained for the constant-value bias magnetic field and (b) the spectra obtained for the
constant-value frequency.

Our analysis is based on an assumption that the internal DC magnetic field is homogeneous.
In this case one can really formulate the spectral problem. At the same time, because of
the demagnetizing effects, the internal DC magnetic field in a ferrite disc is essentially non-
homogeneous. This should strongly affect the spectral picture. To take into account the internal
field non-homogeneity preserving, at the same time, the quantized ‘spectral portrait’ of MS
oscillations in a ferrite disc one has to develop certain models of averaging. The suggested
models of averaging give good agreement with experimental peak positions. Based on the
above models of averaging, the energy spectra in MS-wave ferrite discs taking into account
inhomogeneity of the internal DC magnetic field can be effectively calculated. This makes
solvable the problem of interaction of such ferrite particles with the external RF fields.
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