
measurements, it is observed that the feed parameters have a
significant effect on the radiation and reflection characteristics of
the microstrip antenna. The proposed feeding technique is very
simple, as compared to other methods, and offers an impedance
bandwidth of 20%.
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ABSTRACT: In this paper, a comparison study among three neural-
network algorithms for the synthesis of array patterns is presented. The
neural networks are used to estimate the array elements’ excitations for
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1. INTRODUCTION

The array-pattern-synthesis problem can be defined as that of
finding the array excitations to produce the required antenna-
radiation pattern. Pattern synthesis is required in different appli-
cations of wireless communication, cellular communication, and
radar and military systems. There are numerous synthesis methods,
such as the Woodward–Lawson method [1], the Orchard–Elliott
method [2], the modified Orchard–Elliott method [3], and others.
Most of these methods have a high degree of complexity and
sometimes they are not suitable for real-time applications. Neural
networks offer a fast and easy-to-implement solution due to their
unique parallel structure. The neural network is trained with input/
output sets of examples with characteristics similar to those of the
desired pattern. The input consists of spatial samples of the desired
pattern and the output generates the array elements’ excitations.
After the training phase, a new pattern is introduced to the network
and the array excitation is computed. In this work, the different
neural networks were trained with examples generated by the
Orchard–Elliott method for a flat-top pattern with constant side-
lobe level (SLL).

In this paper, two neural-network algorithms for the synthesis
of array patterns are introduced. The two algorithms use different
activation functions, the radial basis function (RBF), and wavelets
function, respectively. A comparison study was conducted among
different methods: Orchard–Elliott, the multiplayer perceptrons
network (MLP), the RBF network, and the wavelets neural net-
work (WNN) network. In all three neural networks, only one
hidden neuron layer was considered. The parameters for compar-
ison are the mean square error (MSE) between the desired and
computed patterns and the computation time.

2. THEORY

The basic structure of an artificial neural network is an array of
processing elements (also called neurons) ordered in layers with a
network of interconnection weights wi ( j � 1, . . . , L) between
the neurons (also called synaptic weights) [4] in different layers.
The input data xj is processed through an activation function f( x).
The basic model of a single neuron is shown in Figure 1. The
output y of the neuron in this model is given by

y � f� �
j�1

L

wj � xj � b� , (1)

where b is the bias parameter of the activation function f( x). By
adding a new fixed input x0 � 1 and defining the synaptic weight
of this input as the bias w0 � b, the bias can be evaluated in the

Figure 1 Basic model of a neuron

TABLE 2. Radiation Characteristics for Different Feed
Lengths of the Antenna (h1 � h2 � 0.16 cm, �r1 � �r2 � 4.28,
L � 4 cm, W � 2 cm)

Feed Length
S1 (cm)

3-dB Beamwidth
Cross-Polarization

(dB)

E-Plane H-Plane E-Plane H-Plane

4 80° 70° �27 �31
5 84° 62° �33 �40
6 74° 70° �33 �39

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 42, No. 2, July 20 2004 175



training stage [4]. An extension of the single neuron model to a
network with input and output neuron layers interconnected with a
hidden layer is shown in Figure 2. In this schematic diagram, j is
the index of the input layer with j � 1, 2, . . . , L, i is the index
of the hidden layer with i � 1, 2, . . . , N, and k is the index of
the output layer with k � 1, 2, . . . , M.

In the training stage, P sets of radiation patterns and excitations
are used to compute the interconnection weights, wij and wki,
between the layers. The interconnection weights are determined
based on the requirement of minimum error between the neural
model output yk and the training data dk. The purpose of the
training process is to adjust the network interconnection weights
wij and wki in order to minimize the error function E( p), defined
by

E� p� �
1

2 �
k�1

M �
i�1

N �
j�1

L

� yk� xj, wij, wki� � dk�
2, (2)

where p � 1, 2, . . . , P is the index of the training set. This is an
iterative process using the back-propagation algorithm described
in [4–7]. The weights wij and wki are updated for each iteration by

�wm � ��
�E

�wm
, (3)

in which the index m stands for the indices ij or ki and � is the
learning-rate parameter, which is subject to optimization (a study
of this parameter is given in [5]). In this work, the learning rate
was set to � � 0.01. Once the training stage is over and the
weights are determined, the network is fixed such that any new
input data is processed through the network in one pass from input
to output.

In this work, three neural-network architectures, the MLP
[4–7], the RBF [4–7], and the WNN [7–10], have been consid-
ered. In [11–13], it was shown that for large enough networks,
these continuous functions can be used to determine the input-to-
output nonlinear dependence of a neural network. Moreover, in
[8–10], it was shown that the wavelets’ activation functions are
more attractive (in terms of computational efficiency) for approx-
imating functions with sharp transitions.

The first architecture considered here is the MLP network. In
this type of network, one can use one or more hidden layers. A
possible activation function f(v), suggested in [4–7], is given by

f�v� �
1

1 � exp��v�
. (4)

In this case, the inputs to the network are samples of the desirable
pattern. The number of input nodes (neurons) is dependent on the
accuracy needed to represent the desirable pattern. The outputs of
the network are the amplitude and phase-distribution values of the
array elements. Accordingly, the number of output nodes should
be twice the number of array elements. The layers’ interconnection
weights wij and wki, as shown in Figure 2, are generated in the
training stage using patterns with similar characteristics to the
desired pattern (for instance, generated by the Orchard–Elliott
method [2]).

The second architecture considered in this work is the RBF
neural network. The RBF network consists of one hidden layer of
neurons, as shown in Figure 2. The RBF network output is formed
by a weighted sum of the neuron outputs. The kth neuron output yk

for L input neurons and M output neurons is given by

yk � �
i�0

N

wki � zi, k � 1, 2, . . . , M, (5)

where wki is the interconnection weight of the link between the ith

neuron of the hidden layer and the kth neuron of the output layer,
and zi � f(�i) is the output of the activation RBF, where

�i � ��
j�1

L �xj � cij

�ij
� 2

, i � 1, 2, . . . , N, (6)

where j is the index of the input neurons j � 1, 2, . . . , L, xj

denotes the network inputs, and cij and �ij are the mean and
standard deviations of the radial basis activation function, respec-
tively. cij, �ij, and wki are determined in the training process using
the back-propagation algorithm, as explained previously. A com-
monly used activation RBF is the following Gaussian function
[4–7]:

f��� � exp���2�. (7)

The third architecture considered in this paper is the WNN
network [7–10]. WNNs are feed-forward networks with one hid-
den layer that use a wavelet function as the hidden neuron-
activation function f( x). Due to the special characteristics of
wavelet functions, WNNs can approximate networks patterns with
sharp transitions better than MLP and RBF [8–10]. The kth neuron
output of the output layer with M neurons is computed using Eq.
(5), where wki is the interconnection weight that controls the
contribution of the ith activation wavelet function to the kth output,
and zi is the output of the ith hidden neuron, given by

zi � f��i� � ��x � ti

ai
�, i � 1, 2, . . . , N, (8)

where x � [ x1 x2
. . . xL]T is the input vector, ti � [ti1

ti2 . . . tiL]T is the translation parameter vector, ai is the dilation
parameter, and �( ) is the wavelet function. A typical wavelet
function chosen in this work is the inverse Mexican hat function
[10], given by

f��i� � ��x � ti

ai
� � ��i

2 � 1� � exp��
�i

2

2 �, (9)

where

Figure 2 Schematic diagram of a neural network with one hidden layer
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�i � �x � ti

ai
�� ��

j�1

L �xj � tij

ai
�2

, (10)

The advantages of using this wavelet function are discussed in
[10]. The networks’ weights, translation, and dilation parameters
are obtained using the back-propagation algorithm discussed in
[4–7].

3. SIMULATION RESULTS

The array used in the simulations is an 8-elements linear array with
inter-element spacing d � �/ 2. The training-set examples in-
cluded a matrix of flat-top patterns with sector-width intervals of
20°, SLL intervals of 10 dB, and ripple intervals of 1 dB. All
training patterns were generated by the Orchard–Elliott algorithm

[2]. This algorithm generates throughout the solution 2N1 different
combinations of current distributions for each desired pattern,
where N1 is the number of roots in the shaped region. The best
solution (for practical implementation) from all different combi-
nations is the one with minimum ratio of �Imax/Imin�. Throughout
the training stage, the interconnection weights wij and wki at all
levels are determined as explained in section 2. Once the weights
are evaluated, the spatial samples of the desired pattern are injected
in the input of the neural network and the array-element excitations
are obtained at its output. The number of inputs to the network is
equal to the number of samples of the desired pattern and the
number of outputs is twice the number of elements in the array,
since each element has an amplitude and phase excitation. Without
loss of generality, the chosen test case studied in this work is the
synthesis of a flat-top pattern with �25-dB SLL.

Figure 3 Dependence of the MSE on the number of neurons used in the
hidden layer. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 4 Dependence of the MSE on the difference in SLL between
actual tested pattern and the closest training set, for a pattern sector width
of 55° and a ripple of �0.5 dB in the flat region. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]

Figure 5 Dependence of the MSE upon the difference in radiation-
pattern sector width between the actual tested pattern and the closest
training set, for a pattern with �25-dB SLL and �0.5-dB ripple in the flat
region. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

Figure 6 Dependence of the MSE upon the difference in radiation-
pattern ripple between the actual tested pattern and the closest training set,
for a pattern with �25-dB SLL and 55° sector width. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 42, No. 2, July 20 2004 177



Initially, a sensitivity test of the process was conducted to
optimize the number of neurons N in the hidden layer. The
criterion used was the MSE, given by

MSE �
1

Q �
q�1

Q

� f q
�c� � f q

�d��2, (11)

where fq
(d) is the sampled desired pattern, fq

(c) is the sampled
computed pattern, and Q is the total number of samples.

Figure 3 shows the dependence of the MSE on the number of
neurons in the hidden layer. One can observe that a minimum level
of 1 dB in the MSE is obtained using at least 30 neurons in the
MLP network hidden layer, 24 neurons in the RBF network, and
20 neurons in the WNN network.

The sensitivity to changes in the training set was tested by
using different flat-top patterns with different widths of the angular
sector, SLLs, and ripple levels as training-set examples. The num-
ber of neurons in the hidden layer was taken as 30 in the MLP
network, 24 in the RBF network, and 20 in the WNN network.
Figures 4, 5, and 6 show the dependence of the MSE upon the
difference between the desired pattern parameters (SLL, sector
width, and ripple in the flat-radiation-pattern sector) to the relevant
parameters in the closest training set. Figure 4 shows that for a
small MSE with variation of less than �0.1 dB, the SLL should be
in a range of up to 15 dB from the closest training set. Figure 5
shows that the pattern-sector width should be in a range of up to
15° from the closest training set for MSE variation of less than
�0.1 dB. Figure 6 shows that the difference in the ripple of the
flat-radiation-pattern sector to the ripple in the closest training set

should be less than 1 dB for MSE variation of less than �0.1 dB.
In order to check the computational efficiency of the network, an
arbitrary flat-top pattern (not from the training set) was introduced
to the network and the output pattern was compared to the pattern
generated by the Orchard–Elliott method. The MSE between the
desired pattern and the actual network-output pattern was calcu-
lated and the computational time was monitored (the training
phase was not included) on a Pentium-IV 1700-MHz platform. The
MSE and the computational time for different networks architec-
tures are summarized in Table 1. One can note that the WNN
network has the smallest MSE error, and the shortest computa-
tional time shows an improvement of 24.5% and 13.5%, as com-
pared to that of the MLP and RBF networks, respectively.

Figure 7 shows a comparison between the patterns synthesized
by different methods for a desired flat-top pattern with a sector
width of 45°, �25-dB SLL, and ripple of �0.5 dB. It can be noted
that the computed pattern using the MLP network has high side
lobes (approximately �21 dB) and a slight asymmetry in the
flat-top region. The SLL of the computed pattern using the RBF
network is �23 dB and the computed pattern using the WNN
network matches the desired pattern almost perfectly. Figure 8
shows the current distributions generated by the Orchard–Elliott
algorithm, as compared to those generated by the MLP, RBF, and
WNN neural-network algorithms. All current distributions are
almost identical.

4. CONCLUSIONS

Three different neural-network architectures have been tested and
their effectiveness for array-pattern synthesis has been compared.
The results show that all three networks exhibit good perfor-
mances, with preferred results given by the wavelet neural network
(WNN). These techniques can be used in a vast range of applica-
tions in which the networks can be trained offline with suitable
data to carry out real-time processing in order to obtain the array
elements’ excitations.
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