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PACS. 03.65.-w – Quantum mechanics.
PACS. 85.35.Be – Quantum well devices (quantum dots, quantum wires, etc.).
PACS. 76.50.+g – Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave

resonance.

Abstract. – We show that magnetic-dipolar-mode oscillations in a normally magnetized ferro-
magnetic disk have typical atomic properties like discrete-energy levels. Because of the discrete-
energy eigenstates of such oscillations resulting from structural confinement, one can describe
the oscillating system as a collective motion of quasiparticles —the light magnons. We calculate
the energy levels in a magnetic quantum well and the effective masses of the light magnons.

Introduction. – Semiconductor quantum dots are manmade structures in which electrons
are confined in all three spatial directions similar to the physical situation in atoms. As
they show typical atomic properties like discrete-energy levels and shell structures, they are
often referred to as artificial atoms [1]. This provides various implementations of solid-state
systems based on semiconductor quantum dots. It is interesting that confinement phenomena
for magnetic dipolar modes in a normally magnetized ferrite disk may also show typical atomic
properties like discrete-energy levels. Such wave processes reveal very special behaviors of the
geometrical effects. As a starting point for this statement, we call the reader’s attention to the
fundamental difference between the experimental absorption spectra for magnetostatic (MS)
modes in the sphere-shaped [2] and the disk-shaped ferrite resonators [3]. The δ-functional
character of the multiresonance spectra, that one can see in the case of a ferrite disk resonator,
leads to the clear conclusion that the energy of a source of a DC bias magnetic field is absorbing
“by portions” or discretely, in other words. On the contrary, the spectrum of a ferrite sphere
does not show a series of sharp field-dependent resonances and is characterized by very few
and much “spreading” absorption peaks.

The MS-mode characterization in ferrite samples looks as a relatively straightforward and
old problem in magnetism. Nevertheless, some aspects of such oscillations should be re-
considered in view of macroscopically quantized methods. In the last years, there has been a
renewed interest in the high-frequency dynamic properties of finite-size magnetic structures.
In a series of recent publications, confinement phenomena of high-frequency magnetization
dynamics in magnetic particles have been the subject of much experimental and theoretical
c© EDP Sciences
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attention (see [4] and references therein). Mainly, these works are devoted to the impor-
tant studies of the localized spin-wave spectra, but do not focus on the energy eigenstates of
a whole ferrite-particle system. Till now there were no (to the best of our knowledge) phe-
nomenological models of a ferrite particle with high-frequency magnetization dynamics, which
use the effective-mass approximation and the Schrödinger-like equation to analyze the energy
eigenstates of a whole ferrite-particle system similarly to semiconductor quantum wells. To a
certain extent, this letter is aimed to make up such a deficiency.

Energy eigenstates of MS oscillations in ferrite disk resonators. – In the case of magnetic
dipolar modes in a normally magnetized ferrite disk one can formulate the energy eigenvalue
problem for the MS-potential wave function. Some detailed analysis of the experimental
spectra is useful at the beginning. The main feature of multiresonance atomic-like spectra,
observed in experiments [3], is the fact that high-order peaks correspond to lower quantities of
the bias DC magnetic field. Physically, the situation looks as follows. Let H(A)

0 and H
(B)
0 be,

respectively, the upper and lower values of a bias magnetic field corresponding to the borders of
a region. We can estimate the total depth of the “potential well” as ∆U = 4πM0(H

(A)
0 −H(B)

0 ),
where M0 is the saturation magnetization. Let H(1)

0 be a bias magnetic field, corresponding
to the main absorption peak in the experimental spectrum (H(B)

0 < H
(1)
0 < H

(A)
0 ). When we

put a ferrite sample into this field, we supply it with the energy: 4πM0H
(1)
0 . To some extent,

this is a pumping-up energy. Starting from this level, we can excite the entire spectrum from
the main mode to the high-order modes. When one continuously varies the quantity of the DC
field H0, for a given quantity of the frequency ω, one can see a discrete set of absorption peaks.
This means that one has discrete-set levels of the potential energy. The line spectra appear due
to the quantum-like transitions between the energy levels of a ferrite disk-shaped particle. As
a quantitative characteristic of permitted quantum transitions, there is the probability, which
defines the intensities of spectral lines. Certainly, there should be a certain inner mechanism
of the quantization of the DC energy absorbed by a small disk-shaped ferrite sample.

Let us start our analysis by considering an axially magnetized ferrite rod. By an appro-
priate change of variables, any system of equations describing oscillations in one-dimensional
linear structures with distributed parameters may be written as (see, e.g., [5])

Q̂	u =
∂	u

∂t
, (1)

where 	u(z, t) is a vector function with components u1, u2, . . . describing the system properties
and Q̂ = Q̂(z) is a differential-matrix operator. Since MS oscillations in a ferrite rod are
described by the scalar wave function ψ [6], for a lossless structure eq. (1) reduces to

a(1)(z)
∂2ψ(z, t)
∂z2

+ a(2)(z)ψ(z, t) =
∂ψ(z, t)

∂t
. (2)

This is the Schrödinger-like equation.
Let a one-dimensional linear structure be a waveguide structure with parameters inde-

pendent of the longitudinal z-coordinate. For harmonic processes, coefficients a(1) and a(2)

should be imaginary quantities. Based on the energy balance equation, one obtains the average
energy of the MS mode n in a waveguide section restricted by coordinates z1 and z2 [7]:

Wn = − 1

4a(1)
n

iωµ0

∫ z2

z1

∫
S

ψnψ
∗
n dsdz + C, (3)

where C is an arbitrary quantity independent of time. We can normalize the process by sup-
posing that the constant C is equal to zero. One can see that the energy can be orthogonolized
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with respect to the known ψn eigenfunctions. We represent the MS-potential function in a fer-
rite rod as ψ = Aϕ̃e−iβz, where A is a dimensional coefficient, ϕ̃ is a dimensionless membrane
function and β is a propagation constant. The membrane functions of MS modes in an axially
magnetized ferrite rod give a complete discrete set of functions (on a waveguide cross-section).
Based on the Walker equation, one has, for every MS mode in an axially magnetized rod [7],

Ĝ⊥ϕ̃n = β2
nϕ̃n, (4)

where
Ĝ⊥ ≡ µ∇2

⊥; (5)

∇2
⊥ is the two-dimensional, “in-plane”, Laplace operator, µ is a diagonal component of the

permeability tensor. For propagating MS modes, the operator Ĝ⊥ is the positive-definite
operator. The fact that the coefficient a(2) is not included in the expression of the average
energy gives us the possibility to consider different cases based on certain physical models. One
can see that when a(2) ≡ 0, eq. (2) resembles the Schrödinger equation for “free particles”. This
is the case of a constant value of the bias magnetic field 	H0. Certainly, when a ferrite specimen
(having the saturation magnetization of a ferrite material), is placed into a bias magnetic field,
one has a constant “potential energy” of this ferrite sample in the DC magnetic field.

We define the notion of the normalized average MS energy of mode n as the average (on
the RF period) energy of the MS waveguide section with unit length and unit characteristic
cross-section. This energy for a mode with unit amplitude is expressed as

En =
1
4
gµ0β

2
n, (6)

where g is the unit dimensional coefficient.
Based on the above consideration of the states of MS waves in an axially magnetized ferrite

rod, we extend now our analysis to the case of a normally magnetized ferrite disk. In a ferrite
disk with a small thickness/diameter ratio separation of variables is possible. The spectrum of
“thickness modes” is very “rare” compared to the “dense” spectrum of “flat modes”. So, the
spectral properties can be entirely described based on the consideration of only a fundamental
“thickness mode”. For a “flat” mode q in a normally magnetized ferrite disk there are two
waves propagating forth and back with respect to the z-axis, the average energy will be twice
more than the energy expressed by eq. (6). We have as a result

Eq =
1
2
gµ0

(
β(F )

q

)2
, (7)

where β(F )
q is the MS-wave propagation constant along the z-axis in a ferrite region (0≤z≤h).

Since the two-dimensional (“in-plane”) differential operator Ĝ⊥ contains ∇2
⊥ (the two-

dimensional, “in-plane”, Laplace operator), a double integration by parts (the Green theo-
rem) on S —a square of the “in-plane” cross-section of an open ferrite disk— of the integral∫
(Ĝ⊥ϕ̃)ϕ̃∗ dS, gives the following boundary condition for the energy orthonormality for a rod

with radius R:

µ

(
∂ϕ̃

∂ρ

)
ρ=R−

−
(
∂ϕ̃

∂ρ

)
ρ=R+

= 0. (8)

For the operator Ĝ⊥ the boundary condition (8) corresponds to the so-called essential bound-
ary conditions [8]. When such boundary conditions are used, the MS-potential eigenfunctions
of the operator Ĝ⊥ form a complete basis in an energy functional space and the functional
describing the average quantity of energy has a minimum [8].
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To calculate the normalized average MS energies of mode q determined by eq. (7), one
should find the MS-wave propagation constants β(F )

q . Because of the separation of variables,
the propagation constants are defined as solutions of a system of two equations. The first
equation is the characteristic equation for MS waves in an axially magnetized ferrite rod [6], but
with the essential boundary conditions. The second equation corresponds to the characteristic
equation for MS waves in a normally magnetized ferrite slab [9].

Now we can formulate the energy eigenvalue problem for MS waves in a ferrite disk res-
onator as the problem defined by the differential equation

F̂⊥ϕ̃q = Eqϕ̃q, (9)

together with the corresponding (essential) boundary conditions. A two-dimensional (“in-
plane”) differential operator F̂⊥ is determined as

F̂⊥ =
1
2
gµµ0∇2

⊥. (10)

The energy orthonormality in a ferrite disk is described as

(
Eq − Eq′

) ∫
S

ϕ̃qϕ̃
∗
q′ dS = 0. (11)

Because of the discrete-energy eigenstates of the MS-wave oscillations resulting from struc-
tural confinement in a special case of a normally magnetized ferrite disk, one can describe the
oscillating system as a collective motion of quasiparticles —the “light magnons” (lm). When
we juxtapose eq. (2) with the Schrödinger equation for “free particles” (a(2) ≡ 0), we get
the following expression for the effective mass of the light magnon for a monochromatic MS-
wave mode: (

m
(lm)
eff

)
q
=

h̄

2
β2

q

ω
. (12)

The light magnons have a reflexively-translational motion between the lower (z = 0) and
upper (z = h) planes of a ferrite disk. The meaning of the term “light magnon” arises from
the fact that the effective mass of these quasiparticles is much less than the effective mass of
the (“real”, “heavy”) magnons —the quasiparticles existing due to the exchange interaction.
In our description of MS oscillations we neglect the exchange interaction, and the “magnetic
stiffness” is characterized by the “weak” dipole-dipole interaction. Expression (12) looks very
similar to the effective mass of the heavy magnon for spin waves with a quadratic character
of dispersion [10].

Calculations. – Based on the above analysis, we calculated the energy levels in a magnetic
quantum well and the effective masses for light magnons. Calculations were made with the
use of the disk data given in Yukawa and Abe’s paper [3]: 4πM0 = 1790G, 2R = 3.98mm,
h = 0.284mm. The working frequency is ω

2π = 9.51GHz. As a starting point, we found a
discrete set of propagation constants for MS modes in a ferrite disk. The graphical solutions
of a ferrite-rod and ferrite-slab system of equations with respect to the DC magnetic field for
the main “thickness mode” and different “flat modes” are shown in fig. 1. Numbers ν are the
Bessel function orders and numbers q characterize the radial variations of the MS-patential
functions. Figures 2 and 3 show our calculation’s results for the energy levels and effective
masses for different-type light magnons.

In ferromagnetic resonance one can vary the parameters of the permeability tensor in two
ways: a) by variation of H0 (at constant ω) or b) by variation of ω (at constant H0) [10].
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Fig. 1 – The graphical solutions for the main “thickness mode” and different “flat modes”.

The above energy eigenvalue problem was formulated for the case of constant ω. A priori,
there is no foundation to state that for a given quantity of bias magnetic field H0, when
the frequencies ωm and ωn are different, the functions ϕ̃m and ϕ̃n are mutually orthogonal.

Fig. 2 – The energy levels for different-type light magnons: (a) the dipole-type light magnons (ν = 1);
(b) the quadrupole-type light magnons (ν = 2); (c) the hexapole-type light magnons (ν = 3).
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Fig. 3 – The effective masses of light magnons: (a) the dipole-type light magnons (ν = 1); (b) the
quadrupole-type light magnons (ν = 2); (c) the hexapole-type light magnons (ν = 3).

There is, however, a complete correspondence in the resonance peak positions for two types
of spectra: one obtained by variation of H0 (at constant ω) the other by variation of ω (at
constant H0). This matching is illustrated in fig. 4 for the first three peaks (q = 1, 2, 3) at
ν = 1. In fact, we are able to place sequentially every peak from the frequency spectrum at the
same frequency f ′ according to the sequence of the DC magnetic-field values. So in the case

Fig. 4 – Mutual matching for the frequency and magnetic-field spectra.
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of variation of ω (at constant H0), the eigenfunctions constitute the orthonormal functional
basis and, as a result, one has the same discrete spectrum of the energies Eq.

Conclusion. – For magnetic-dipolar-mode oscillations in a normally magnetized ferro-
magnetic disk we showed that a macroscopical quantum model allows using the effective-mass
approximation and the Schrödinger-like equation to analyze the energy eigenstates of a whole
ferrite-particle system similarly to semiconductor quantum wells.
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