Improved scattering analysis of arbitrary-shaped cylinders in a focused beam system using Gabor representation

R. Shavit

Abstract: Gabor expansion is used to reconstruct the scattering pattern and the induced field ratio (IFR) of an arbitrarily-shaped cylinder measured in a focused beam system. The fields of the transmitting and receiving antennas in the measurement system are described by equivalent fundamental Gaussian beams. The results obtained by the proposed method of analysis verify well with the scattering characteristics computed analytically or numerically by the method of moments (MoM), finite elements method (FEM) and by a previous method of analysis using an FFT algorithm.

1 Introduction

The ability to compute and measure the scattering characteristics of an arbitrary-shaped cylinder is essential to the entire scattering analysis of large sandwich and metal space frame radomes. The scattering characteristics of an arbitrary-shaped cylinder is characterised by its forward scattering value (IFR) and its scattering pattern. The concept of IFR was introduced by Kay [1] for modelling metal space frame radomes. Both IFR and scattering pattern are defined for uniform plane wave illumination. Some deficiencies in the IFR approach have been discussed in [2], and a more rigorous approach based on the full 2-D scattering matrix from an individual beam/seam was proposed by [3, 4].

Analytical and numerical computations of the scattering characteristics from cylinders can be performed, but in many cases these techniques are quite laborious and time consuming. Consequently, in many practical instances to speed up the developing process, control manufacturing process and verify the numerical computation, an accurate measurement technique of the IFR and the scattering pattern is required. Few experimental procedures [5, 6] were proposed to determine the scattering characteristics. However, these methods either lack the capability to measure the scattering pattern [5] or lack the capability to filter out reflections from surrounding objects [6]. In a previous paper [7], a new combined experimental and numerical procedure based on a focused beam system was proposed. The unique feature of the focused beam system is its capability to filter out specular and diffuse reflections from adjacent objects. The Gaussian-type characteristics of the transmitting and receiving beams in such a system avoids direct measurement of the IFR and the scattering pattern for uniform plane wave illumination and a reconstruction procedure to compensate for the perturbation caused by the Gaussian illumination of the cylinder is necessary. A correction algorithm, based on FFT, was proposed to reconstruct the scattering characteristics of the cylinder.

The current paper describes an improved and more efficient algorithm to reconstruct the scattering characteristics of a cylinder, based on measurements taken in a focused beam system. In the proposed procedure, the scattered field is expanded in terms of Gabor series functions [8] and the data is manipulated to reconstruct the scattering pattern and the IFR for uniform plane wave illumination.

2 Method description

The schematic configuration of the measurement system is shown in Fig. 1. The system is composed of two circular identical dielectric lenses L_1 and L_2 with diameter D and two feed horns H_1 and H_2 with aperture dimensions $A \times B$ and linear polarisation. Each lens is designed to have two focal points located at distances f_1 and f_2 from the opposite sides of the lens surface. The actual distance of the feed horn phase centre from the lens surface is d_f. In principle, it is desired that $f_1 = d_f$; however, due to the movement of the feed horn phase centre with frequency this requirement is not perfectly achieved. The energy radiated by H_1 feed horn is captured by L_1 lens, focused on the opposite side to the common focal point of the two lenses at a distance d_2 from the lens surface, radiated into the L_2 lens and focused again into the receiving H_2 feed horn. We define the focal plane ($z = 0$) of the system as the plane passing through the internal (common) focal point of the two lenses and perpendicular to the system axis. In the measurement to be...
described, the cylindrical scatterer will be located in this focal plane on the system axis.

In this paper, we made the assumption that the propagation mechanism of the focused beam system can be described by an inward and an outward Gaussian beam with common waists in the focal plane \((z = 0)\). The minimum waists in the focal plane are \(w_{o1}\) and \(w_{o2}\) representing the field distribution in \(x\) and \(y\) directions, respectively. The received signal is set to zero (amplitude and phase) before the cylinder is moved into the focal plane. In the next step, the cylinder is brought into the focal plane on the system axis and the relative amplitude \(\Delta\alpha\) and phase \(\Delta\phi\) of the received signal \(R(y) = \Delta\alpha e^{i\Delta\phi}\) is recorded. Then the receiving lens is rotated in predetermined angular increments on an arch with its centre of rotation located on the system axis in the focal plane. For each angular point, two readings are taken with and without the cylinder.

The angular dependence of the transmission loss between the two feed horns is proportional to the coupling between the inward and outward Gaussian beams in the focal plane. In the case where the scatterer is absent, it has been shown [7] that this coupling factor \(C_c(\theta)\) is equal to:

\[
C_c(\theta) = C_0 e^{-\frac{\Delta\alpha^2}{\sin^2 \theta}}
\]

in which \(C_0\) is the coupling coefficient between the two beams, when the two lenses are aligned \((\theta = 0)\). The coupling factor \(C_c(\theta)\) can be either computed through eqn. 1 or directly measured.

2.1 System analysis with the cylindrical scatterer

In this case, the signal received by \(H_2\) feed horn is proportional to the coupling between the outward Gaussian beam represented by the field distribution \(f_1(x, y)\) and the total electric field in the vicinity of the cylinder \((z = 0)\). Thus, \(C_c(\theta)\) can be expressed as shown in [9] by:

\[
C_c(\theta) = \int \int \int \left(f_1 + f_{sq} \right) f_2^{*} dx dy
\]

(2)

where \(f_1(x, y)\) is the inward Gaussian beam distribution and \(f_{sq}(x, y)\) is the scattered electric field by the cylinder in the focal plane. In a focused beam system, \(f_{sq}(x, y)\) can be approximated [7] by:

\[
f_{sq}(x, y) = \begin{cases} f_2(y)e^{-\frac{x^2}{\omega_0^2}} & \text{if } |y| \leq \frac{a}{2}, \frac{x}{\omega_0} < \infty \\ 0 & \text{elsewhere} \end{cases}
\]

(3)

where \(f_2(y)\) is the scattered field distribution from the cylinder in the focal plane for uniform plane wave illumination and \(a\) is the projected width of the cylinder on the focal plane. If we denote by \(C_c(\theta)\) the coupling between the scattered field by the cylinder \(f_{sp}(x, y)\) representing the field of the nonaligned outward Gaussian beam \(f_1(x, y)\), it has been shown in [7] that:

\[
C_{s}(\theta) = C_{s0}\frac{\Delta\phi}{\Delta\alpha}
\]

(4)

in which, \(C_{s0} = \frac{(2\pi w_{o1}^2)^{1/2}}{\omega_0}\) is a normalisation factor and \(f_{sp}(y) = |f_1(y)|e^{i\frac{\Delta\phi}{\Delta\alpha}}\). One can observe that \(C_{s}(\theta)\) has the form of the far field radiation pattern of an equivalent aperture distribution \(f_{sp}(y)\) located in the focal plane, while our interest is in the radiation pattern of the field distribution \(f_1(y)\) excited by a uniform plane wave illumination.

In a focused beam system, it will be natural to expand the equivalent aperture distribution \(f_{sp}(y)\) in terms of functions with Gaussian characteristics, like the Gabor series functions with Gaussian distribution [8]. If we follow the procedure outlined in [11], \(f_{sp}(y)\) can be rewritten in the form:

\[
f_{sp}(y) = \sum_{m} \sum_{n} A_{mn}(g(y - mL))e^{-im\Omega y} \Omega \cdot L = 2\pi
\]

(5)

in which \(g(y)\) are the normalised Gabor functions with Gaussian distribution:

\[
g(y) = \left(\frac{\sqrt{2}/2}{\Omega} \right)^{1/2} e^{-\pi \frac{y^2}{L}}
\]

(6)

and \(A_{mn}\) are the unknown coefficients of these functions. One can observe that the Gabor representation expands the function \(f_{sp}(y)\) in terms of displaced and inclined Gaussian functions. The free parameters \(L\) and \(\Omega\) are determined by convergence tests of eqn. 5. Criteria for the particular choice of \(L\) are discussed in [12]. If we denote \(\eta = ks\sin\theta\) and substitute eqn. 5 into eqn. 4, we obtain after performing the analytical integration that:

\[
C_{s}(\eta) = C_{s0} \sum_{m} \sum_{n} A_{mn} G(\eta - n\Omega)e^{j\Omega nL\eta}
\]

(7)

where

\[
G(\eta) = \left(\frac{2^{3/4}\pi}{\Omega} \right)^{1/2} e^{-\pi \frac{\eta^2}{L^2}}
\]

is the Fourier transform of \(g(y)\). In the actual measurement, we normalised the received signal at each angle to \(C_{s0}\) the value recorded at \(\theta = 0\) without the scatterer, and we can compute \(C_{s}(\eta)\) based on eqn. 4. Thus, the only unknown quantity in eqn. 7 are the coefficients \(A_{mn}\). The coefficients \(A_{mn}\) in eqn. 7 may be evaluated with the aid of the so-called biorthogonal function \(\gamma(\eta)\) defined implicitly [12] by:

\[
\int_{-\infty}^{\infty} g(y)\gamma^{*}(y - mL)e^{j\Omega y} dy = \delta_{0n}\delta_{m0}
\]

(9)

In [12] it has been shown that the explicit form of \(\gamma(\eta)\) is:

\[
\gamma(\eta) = \left(\frac{\pi^3}{2^{1/2}LK_0^3} \right)^{1/2} e^{\pi \frac{\eta^2}{L^2}} \sum_{n=\frac{1}{2}}^{\infty} (-1)^{n} e^{-\pi(n+\frac{1}{2})^2}
\]

(10)

in which \(K_0 = 1.85407468\). If we denote by \(\Gamma(\eta)\) the Fourier transform of \(\gamma(\eta)\), multiply both sides of eqn. 7 by \(1/(2\pi)^{1/2}(\eta - n\Omega)e^{j\Omega \eta}\), integrate over the interval \([-\infty, \infty]\) and implement the biorthogonal relation (eqn. 9), we obtain:

\[
A_{mn} = \frac{1}{2\pi C_{s0}} \int_{-\infty}^{\infty} C_{s}(\eta)\Gamma^{*}(\eta - n\Omega)e^{-j\Omega nL\eta} d\eta
\]

(11)

Alternatively, if we express \(\Gamma(\eta)\) in terms of \(\gamma(\eta)\) and observe that \(C_{s}(\eta)\) is the Fourier transform of \(f_{sp}(y)\), eqn. 11 can be rewritten in the form:

\[
f_{sp}(y) = \sum_{m} \sum_{n} A_{mn}(g(y - mL))e^{-im\Omega y} \Omega \cdot L = 2\pi
\]
Once the coefficients \(A_{mn} \) are computed, either by using eqn. 11 or eqn. 14, one can compute \(f_{sp}(y) \) using eqn. 5 and consequently \(f(y) \) the scattered field distribution from the cylinder in the focal plane for uniform plane wave illumination using the relation:

\[
 f_{s}(y) = f_{sp}(y)e^{2\left(\frac{\eta_0}{k} \right)^2} \text{ in the range } [-a/2, a/2]
\]

If we follow the procedure outlined in [7] knowledge of \(f_{s}(y) \) enables us to compute the scattering radiation pattern \(E_{s}(\theta) \) for uniform plane wave illumination using [10]

\[
 E_s(\theta) = \left(\sum_{l=0}^{L_p} C_s(\eta_0) \sin^2(\eta_0) \right. \left. \left(y + mL \right) e^{-j(\eta_0 y)} \right) \text{ with FFT}
\]

Alternatively, knowledge of \(f_{s}(y) \) enables us to compute a new set of coefficients \(A_{mn} \) using eqn. 12 and the reconstructed scattering radiation pattern using eqn. 7. Moreover, the IFR can be computed using [7]

\[
 IFR = \left(10^{20} e^{i\Delta \phi} - 1\right) \sqrt{\frac{a^2}{2}} \int_{-a/2}^{a/2} f_{s}(y) e^{2\frac{a^2}{2}} dy
\]

in which \(\Delta \phi \) denote the change in amplitude and the change in phase, when the cylinder is brought to the focal plane on the system axis.

3 Numerical results

In [7] it was reported about a focused beam system built to validate the theoretical approach using an FFT algorithm. Two AEL antenna horns model H-1498 operating in the frequency range 2-18GHz were chosen as feeds with almost constant 10dB beamwidth in both E and H planes over the entire frequency bandwidth. The diameter of the lens was chosen to be 55.9cm, and it was manufactured from material with dielectric constant 2.3. The lens focal distances \(f_1 \) and \(f_2 \) were chosen as 53.3cm and 203.2cm, respectively. At the operating frequency 12GHz, the Gaussian beam waist size \(w_0 \) and \(w_0 \) in the focal plane were measured to be 6.45cm and 7.8cm, respectively, at -8.7dB points (the field is \(e^{-1} \) of its value on axis).

![Fig. 2 Electric field distribution \(f_{sp}(y) \) of dielectric beam 1.2 \(\times \) 5.71cm in focal plane of focused beam system compared to field distribution for uniform plane wave illumination at 12GHz (vertical polarisation) using FFT and Gabor algorithms](image)

T two rectangular cylinders (metal and dielectric) used in a typical metal and dielectric space frame radomes were chosen for the theoretical verification. The cross-section of the metal beam was 1.37 \(\times \) 5.16cm and that of the plastic beam was 1.2 \(\times \) 5.71cm with \(\varepsilon = 5.0 \). The cylinders were tested at 12GHz for both vertical (VP) and horizontal (HP) polarisations and for two incident angles (broadside and narrow side). One can observe that, in our case, the projected cylinder width a vary between 0.48\(\text{a} \) to 2.28\(\text{a} \). Due to physical constraints of the measurement setup, the angular extent of our focused beam was \(\theta_{max} = 70^\circ \). The limitation posed on \(C_s(\eta) \) to be band limited in the visible range limits the algorithm to apertures \(a > \lambda \). In cases where \(a < \lambda \) the perturbation due to the Gaussian illumination of the cylinder is negligible and the scattering radiation pattern is directly proportional to the measurement of \(C_s(\eta) \) as discussed in [7]. The beams were illuminated on their broadside (\(a > \lambda \)). Consequently, the number of angular measurements in the visible range \([\pm \sin \theta_{max}, \sin \theta_{max}] \) is equal to 5. Moreover, due to the symmetry of the scattering radiation pattern, it will be sufficient to use only about half of this quantity. For comparison, the FFT algorithm detailed in [7] required more than ten times more angular measurements to reproduce the scattering radiation pattern. The choice of the Gaussian parameter \(L \) affects the truncation properties of the summation in eqns. 5 and 7. As discussed in [11] the minimum number of elements in these summations is obtained, if we make the choice \(L = a/2 \). For this choice the upper bound \(M \) of the index \(m \) is \(|m| < M = a/2L \) and the upper bound of the index \(n \) is \(|n| < N = L/2\Delta \theta \). The recorded data was processed with an FFT algorithm as described in [7] and using Gabor series representation to evaluate the field distribution of the scatterer \(f_{s}(y) \) in the focal plane. In the FFT algorithm, we used 27 angular measurements and performed interpolation to obtain 2048 points. Fig. 2 shows the field distribution \(f_{s}(y) \) computed with the Gabor series representation compared with that computed with the FFT algorithm and to the perturbed field distribution \(f_{sp}(y) \) for the dielectric beam illuminated on its broadside and for vertical polarisation. One can observe a relatively good agreement between the results obtained with the two algorithms, considering the fact that using the Gabor representation only three angular data.
measurements points were used. Fig. 3 shows the comparison among the computed scattering pattern by FEM [13] the reconstructed scattering pattern using the Gabor representation using $M = 5, N = 7, L_p = 2$ and the reconstructed pattern using the FFT algorithm. Again, one can observe a relatively good agreement in the main beam and in the sidelobe level, when we compare the computed and the reconstructed pattern. The difference in the sidelobe level, when we compare the computed and the reconstructed scattering pattern using the Gabor representation with the scattering pattern helps to refine the calculations of the scattering analysis for large space frame radomes.

5 Acknowledgments

The author thanks A. Mantz and C. Slotta for performing the measurements and T. Wells, A. Cohen, T. Monk and J. Sangiolo for very helpful and fruitful discussions. All are associated with ESSCO, Concord, M. A., USA.

6 References