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Abstract: The scattering from an arbitrarily
shaped cylinder is characterised by its induced
field ratio (IFR) and its scattering pattern. The
paper describes how a focused beam system is
used to determine the scattering characteristics of
an arbitrarily shaped cylinder. The fields of the
transmitting and receiving antennas are described
by equivalent fundamental Gaussian beams. An
analytical procedure based on the computation of
the coupling between the Gaussian beams in the
focused beam system and the scattered field is
used to determine the IFR and the scattering
pattern of the cylinder. The results obtained by
this method verify well with the scattering
characteristics computed analytically or
numerically by the method of moments or finite
element method. 

1 Introduction 

Large sandwich and metal space frame radomes are
assembled from many panels connected together with
seams or metal beams. These seams/beams introduce
scattering effects that degrade the overall electromag-
netic performance (transmission loss and radiation pat-
tern perturbation) of the antenna enclosed in the
radome. This effect can be evaluated by considering the
superposition (array factor) of all scattered fields from
all the seams/beams in front of the antenna. The cor-
nerstone for such a computation is the knowledge of
the scattering characteristics from an individual seam/
beam, which can be approximated from the scattering
characteristics of an infinite extent cylinder with the
same cross-section as the seam/beam in the radome.
Therefore, the ability to compute and measure the scat-
tering characteristics of an arbitrarily shaped cylinder is
essential to the entire scattering analysis. The scattering
characteristics of an arbitrarily shaped cylinder are
characterised by its forward scattering value (IFR) and
its scattering pattern. This concept was introduced by
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Kay [1] for modelling metal space frame radomes. The
IFR is defined as the ratio of the forward scattered
field to the hypothetical field radiated in the forward
direction by the plane wave in the reference aperture of
width equal to the shadow of the geometrical cross-sec-
tion of the cylinder on the incident wavefront [2]. Low
IFR is an indication of low scattering effect in the for-
ward direction. Some deficiencies in the IFR approach
[1] to predict the total scattered field from all the
beams/seams in a radome have been discussed in [3]
and a more rigorous approach based on the full 2 × 2
scattering matrix from an individual beam/seam for
general incident field conditions combined with the
plane wave spectrum approach was applied to metal
space frame radomes [4] and dielectric space frame
radomes [5]. 

Analytical computations of the scattering characteris-
tics from cylinders can be performed for canonical
cross-sections like those of the circle and ellipse, but for
arbitrarily shaped cylinders numerical computations
with techniques like MoM (method of moments) [6]
and FEM (finite element method) [7] are required.
These numerical techniques are in many cases quite
laborious and time-consuming. Consequently, in many
practical instances, to speed up the developing process,
control manufacturing processes and verify the numeri-
cal computation an accurate measurement technique of
the IFR and the scattering pattern is required. Rusch
[2] developed the IFR concept and suggested an experi-
mental procedure to measure its value in the far field
for an arbitrarily shaped cylinder. This procedure lacks
the capability to measure its scattering pattern. Shavit
[8] proposed an alternative technique to determine both
the IFR and the scattering pattern of an arbitrarily
shaped cylinder based on near-field probing. However,
both methods lack the ability to filter out the reflec-
tions from surrounding objects, which may compro-
mise the accuracy of the measurement. 

The current paper describes a new combined experi-
mental and numerical procedure to determine the scat-
tering characteristics, IFR and scattering pattern of
arbitrarily shaped cylinders using a focused beam sys-
tem. The unique feature of the focused beam system,
which produces a highly collimated beam between the
transmitting and receiving ends, helps to reduce meas-
urement errors due to specular and diffuse reflections
from adjacent objects in comparison to the errors
present in a previous measurement system [2], where
wide beamwidth antennas are used on the transmitting
and receiving ends. 
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2 Method description 

The schematic configuration of the measurement sys-
tem is shown in Fig. 1. The system is comprised of two
circular identical dielectric lenses L1 and L2 with diam-
eter D and two feed horns H1 and H2 with aperture
dimensions A × B and linear polarisation. Each lens is
designed to have two focal points located at distances
f1 and f2 from the opposite sides of the lens surface.
The actual distance of the feed horn phase centre from
the lens surface is d1. In principle it is desired that f1 =
d1; however, due to the movement of the feed horn
phase centre with frequency this requirement is not
achieved perfectly. The energy radiated by the feed
horn H1 is captured by the L1 lens, focused on the
opposite side to the common focal point of the two
lenses at a distance d2 from the lens surface, radiated
into the lens L2 and focused again into the receiving
feed horn H2. We define the focal plane of the system
as the plane passing through the internal (common)
focal point of the two lenses and perpendicular to the
system axis. In the measurement to be described the
cylindrical scatterer will be located in this focal plane
on the system axis. In such a system most of the energy
is transferred from one feed horn to the other feed
horn without significant losses and reflection interfer-
ence from surrounding objects. The contours of the
lenses can be computed by geometrical optics as
described in [9]. 

In this paper we made the assumption that the prop-
agation mechanism of the focused beam system can be
described by fundamental Gaussian beams [10]. In
addition, we made the assumption that the two lenses
act as phase transformers [11], each providing a phase
advancement approximately proportional to the square
of the distance r of a ray from the axis of propagation,
∆φ = πr2/λf, in which 1/f = 1/f1 + 1/f2. This phase
advancement transforms the diverging Gaussian beam
of feed horn H1 (cf. Fig. 1) to a converging Gaussian
beam with minimum waists w0x and w0y, representing
the field distribution in the x and y directions, respec-
tively. Since the waists w0x and w0y are close in value,
we can define an equivalent quasi-circular minimum
waist in the focal plane by w0l = √w0xw0y. The mini-
mum waist of the internal Gaussian beam, w0l, is
located a distance d2 from the lens surfaces on both
sides. By symmetry, the converging Gaussian beam is
transformed into an outward Gaussian beam (at the
focal plane z = 0) captured by the second lens and
transformed into an inward Gaussian beam captured
by feed horn H2 as shown in Fig. 1. In the internal
focal plane, we obtain a minimum Gaussian beam
waist w0l with constant phase distribution. The received
signal is set to zero (amplitude and phase) before the
cylinder is moved into the focal plane. Then, the cylin-
der is brought into the focal plane on the system axis,

Fig.1 Schematic configuration of focused beam system 
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and the relative amplitude ∆α and phase ∆φ of the
received signal R(y) = ∆αej∆φ is recorded. Then the
receiving lens is rotated in predetermined angular incre-
ments on an arch with its centre of rotation located on
the system axis in the focal plane. For each angular
point two readings are taken with and without the cyl-
inder. 

2.1 System analysis without the scatterer 
The angular dependence of the transmission loss
between the two feed horns is proportional to the cou-
pling between the inward and outward Gaussian beams
in the focal plane, Cc(θ). The electric field distribution
in the focal plane (z = 0) of the inward Gaussian beam,
ft(x, y), can be described by [10] 

while the electric field distribution of the outward
Gaussian beam, fr(x, y), in the focal plane can be
expressed in a similar fashion, but with the addition of
a linear progressive phase due to the nonalignment of
this beam with the system axis (cf. Fig. 1), 

f0t and f0r are normalisation factors. The coupling fac-
tor Cc(θ) between the two Gaussian beams is computed
by performing a two-dimensional integral in the focal
plane over the product of the two electric field distribu-
tions fr and ft [10], 

Substitution of eqns. 1 and 2 into eqn. 3, and evalua-
tion of the integral, results in 

in which C0 = f0rf0tw0xw0yπ/2 is the coupling coefficient
between the two beams, when the two lenses are
aligned (θ = 0). The coupling factor Cc(θ) can be either
computed through eqn. 4 or measured directly. 

2.2 System analysis with the scatterer 
In this case the signal received by feed horn H2 is pro-
portional to the coupling, Ct(θ) of the outward Gaus-
sian beam with the total electric field in the vicinity of
the cylinder in the focal plane. The total electric field is
the superposition of the electric field without the cylin-
der and the electric field scattered by the cylinder. Thus 

in which fsp(x, y) is the scattered electric field in the
focal plane (z = 0). fsp(x, y) can be approximated by 

where fs(y) is the scattered field distribution from the
cylinder in the focal plane for uniform plane wave illu-
mination and a is the projected width of the cylinder
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on the focal plane. In a similar fashion to the computa-
tion of the coupling in the focal plane without the cyl-
inder, we can compute the coupling Cs(θ) between the
scattered field by the cylinder and the nonaligned out-
ward Gaussian beam; evaluation of such an integration
results in 

in which Cs0 = f0rw0x √π/2. At this point we can make
an interesting observation that Cs(θ) has the form of
the far field radiation pattern [12] of the field distribu-
tion fs(y) exp(-2y2/w0y

2) excited in the focal plane. One
should remember that we are interested in the radiation
pattern from the field distribution fs(y) (uniform plane
illumination). 

In the actual measurement, we normalise the received
signal at each angle to C0 the value recorded at θ = 0
without any scatterer. Substitution of eqns. 7 and 4
into eqn. 5 yields 

2.3 Scattering pattern evaluation 
The scattering radiation pattern Es(θ) for uniform
plane wave illumination can be computed by [12] 

On the other hand, in a focused beam system the
received signal (eqn. 8) is proportional to a similar
quantity, Esp(θ), defined as 

If we compare Esp(θ) with the scattering radiation
pattern, Es(θ), one can recognise that for cylinders with
a/w0y << 1, Esp(θ) is a very good estimate of the scatter-
ing radiation pattern. In cases that a/w0y ≥ 1 a different
approach should be adopted. Inspection of eqn. 10
reveals that the field distribution fs(y) can be evaluated
by inverse Fourier transform of eqn. 10 such that 

in which u = k sinθ. In the case that a/λ > 1, Esp(u) is a
bandlimited function and knowledge of its behaviour in
the visible range (–k sinθmax, k sinθmax), where θmax is
the maximum measurement angle, would be sufficient
to truncate the integration to only the visible range
without significant loss in accuracy. Once fs(y) is evalu-
ated through eqn. 11, we can compute the scattering
radiation pattern through eqn. 9. Moreover, if Esp(u) is
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a bandlimited function, we can use the Nyquist sam-
pling theorem to reduce the amount of angular meas-
urements without compromising the accuracy of the
reconstructed scattering pattern. 

2.4 IFR computation 
The IFR of an arbitrarily shaped cylinder is given by
[2] 

in which Z0 = 120 π, Jsx is the induced current distribu-
tion on the cylinder and E0 is the intensity of the inci-
dent electric field. In the case that most of the scattered
energy propagates in the forward half medium, an
alternative representation of the IFR can be derived in
terms of the tangential scattered electric field, fs(y), in
the projected aperture of the cylinder on the focal
plane, 

If we denote the change in amplitude by ∆α(dB) and
the change in phase by ∆φ, when the cylinder is
brought to the focal plane on the system axis and we
use eqns. 13 and 8 with E0 = f0t, we can express the
IFR by 

As a first order approximation, we can assume that
fs(y) = const in the projected width. In this specific
case, we obtain a very simple and compact expression
for the IFR: 

in which erf(x) = 2/√π ∫0xe–t2 dt is the error function. 

3 Numerical results 

A focused beam system was built to validate the theo-
retical approach outlined previously. Two AEL model
H-1498 antenna horns operating in the frequency range
2–18GHz were chosen as feeds with almost constant
10dB beamwidth in both E and H planes over the
entire frequency bandwidth. The diameter of the lens
was chosen to be 55.9cm and it was manufactured
from material with dielectric constant 2.3. The lens
focal distances f1 and f2 were chosen as 53.3cm and
203.2cm, respectively. Because of the variation of the
feed horn phase centre location with frequency we had
to determine d2 for each test frequency. This task was
accomplished by probing the amplitude and phase of
the electric field in front of lens L1. The distance d2 was
chosen as the distance for which the maximum phase
flatness was obtained. Fig. 2 shows a typical recorded
near-field signal (amplitude and phase) at the minimum
waist location for 12GHz as the operating frequency
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and vertical polarisation. The abscissa represents the
relative distance along the y axis in front of lens L1.
One can observe Gaussian amplitude tapering and the
phase flatness of the probed electric field. In this case
the distance d1 from the feed horn to the lens was
found to be 49.2cm and the distance d2 from the probe
to the lens was 166.3cm. The Gaussian beam waist
sizes, w0x and w0y, in the focal plane were measured to
be 6.4cm and 6.8cm, respectively, at –8.7dB points (the
field is e-1 of its value on axis). Investigation of the fre-
quency bandwidth (flat phase distribution in the focal
plane) of the lens system revealed that the operating
frequency range is ~ 8–15GHz.  

Two cylinders – a 1.37 × 5.16cm rectangular metal
beam and a 1.2 × 5.71cm plastic beam with εr = 5.0 –
were tested at 12GHz for both vertical (VP) and hori-
zontal (HP) polarisations and for two incident angles
(broadside and narrow side). Fig. 3 shows the compari-
son between the computed (eqn. 4) and measured
angular dependence (amplitude and phase) of the cou-
pling factor Cc(θ) without the cylindrical scatterer at
12GHz and vertical polarisation. One can observe a
good agreement between the two. Fig. 4 shows a typi-
cal recorded signal (amplitude and phase) throughout
the angular movement of the receiving end (horn H2
and lens L2) with the plastic beam located in the focal
plane and illuminated by a vertical polarised wave on
its broadside. Owing to the physical constraints of the
measurement setup, the angular extent of our focused
beam was θmax = 70°. The recorded data were plugged

Fig.2 Recorded near-field signal (amplitude and phase) at minimum
waist location in local plane at 12GHz and vertical polarisation 
——— phase 
– – – – amplitude 

Fig.3 Recorded signal (amplitude and phase) proportional to the cou-
pling factor Cc(θ) without the scatterer at 12GHz and vertical polarisation 
j amplitude (measured) 
s phase (measured) 
——— amplitude (computed) 
– – – – phase (computed) 
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into eqn. 8 and processed with an FFT algorithm to
evaluate the field distribution of the scatterer, fs(y), in
the focal plane using eqn. 11. The FFT algorithm
requires the value of Esp(u) in equal increments du.

Therefore, we had to interpolate the function Esp(θ) to
obtain its value at the required u locations. Moreover,
if we denote the number of samples for the FFT by Nu,
the increment on the u axis will be du = k sinθmax/Nu
and the corresponding increment on the y axis (Nyquist
sampling theorem) will be dy = λ/sinθmax. One can
observe that the larger θmax is, the better the resolution
of the field distribution on the y axis. Fig. 5 shows the
field distribution fs(y) (uniform field illumination) com-
pared to fsp(y) field distribution (Gaussian field illumi-
nation). It is interesting to note the tapering caused by
the Gaussian beam illumination in the projected area
of the dielectric beam on the focal plane. Fig. 6 shows
the comparison among the computed scattering pattern
by FEM, the direct measured scattering pattern as a
result of fsp(y) distribution, Esp(θ) and the reconstructed

Fig.4 Recorded signal (amplitude and phase) proportional to the cou-
pling factor Ct(θ) with dielectric beam 1.2 × 5.71cm in focal plane, illumi-
nated on its broadside at 12GHz and vertical polarisation 
——— measured 

Fig.5 Electric field distribution in focal plane for uniform plane illumi-
nation fs(y) and for Gaussian beam illumination fsp(y) of a dielectric beam
1.2 × 5.71cm illuminated on its broadside at 12GHz and vertical polarisa-
tion 
——— fs(y) 
– – – – fsp(y) 
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scattering pattern due to fs(y) distribution, Es(θ). One
can observe that a good agreement in the main beam
and in the sidelobe level is obtained, when we compare
the computed and the reconstructed pattern, while the
direct measured scattering pattern Esp(θ) is character-
ised by lower sidelobes as a result of the tapering in its
field distribution introduced by the Gaussian beam illu-
mination. This tapering effect is insignificant for very
narrow cylinders and in these cases Esp(θ) can be con-
sidered as a reliable scattering pattern. The ripple in the
reconstructed pattern at θ ≈  12° and 23° is probably
caused by corrupted phase measurement data. 

The data from all measurements taken for both the
plastic and metal beams was processed to obtain the
reconstructed field distribution fs(y), and the corre-
sponding IFR was computed based on eqn. 14. The
results obtained were compared to the IFR values com-
puted through eqn. 15 and to the IFR values computed
numerically by MoM for the metallic beam and by
FEM for the plastic beam. Computation results of the
IFR for the various types of cylinders by the three
methods at 12GHz are shown in Table 1. 

One can observe a good agreement between the
numerical computation (MoM and FEM) and the com-
puted values using the reconstructed field distribution
fs(y) (eqn. 14). It is interesting to note that we obtained
fairly good agreement with the results obtained with
the first order approximation, eqn. 15. This fact indi-

Fig.6 Comparison among computed, direct measured and reconstructed
scattering patterns of dielectric beam 1.2 × 71cm illuminated on its broad-
side at 12GHz and vertical polarisation 
——— reconstructed 
sss measured 
– – – – computed 
IE
Table 1: Comparison between measured and computed IFR values 

Vertical polarisation Horizontal polarisation

IFR amplitude IFR phase, deg. IFR amplitude IFR phase, deg.

Cylinder 
type

MoM/
FEM

Using 
reconst. 
distr. 
eqn. 14

First 
order 
approx. 
eqn. 15

MoM/
FEM

Using 
reconst. 
distr. 
eqn. 14

First 
order 
approx. 
eqn. 15

MoM/
FEM

Using 
reconst. 
distr. 
eqn. 14

First 
order 
approx. 
eqn. 15

MoM/
FEM

Using 
reconst. 
distr. 
eqn. 14

First 
order 
approx. 
eqn. 15

Plastic 
a = 1.2cm

2.24 2.19 2.187 164.3 166.1 165.5 1.05 0.96 0.91 125.9 132.5 129.1

Plastic 
a = 5.71cm

1.91 1.93 1.924 158.8 162.4 163.07 1.79 1.84 1.72 162.6 164.0 167.48

Metal 
a = 1.37cm

2.42 2.3 2.54 151.8 153.4 152.34 1.2 1.1 1.02 –165.3 –168.3 –144.3

Metal 
a = 5.16cm

1.14 1.20 1.1 172.6 171.6 172.6 0.98 1.0 1.06 –176.6 176.1 179.2
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cates that in many cases, if we are interested just in the
IFR value, it would be sufficient to take only one meas-
urement with the cylinder in the focal plane, without
the need to take any angular measurements. 

4 Summary 

A new combined experimental and numerical proce-
dure to determine the scattering characteristics, IFR
and scattering pattern of arbitrarily shaped cylinders
using a focused beam system have been presented. The
analysis is based on the assumption that the electric
fields between the lenses can be described by funda-
mental Gaussian beams. An analytical procedure based
on the computation of the coupling between the Gaus-
sian beams in the focused beam system and the scat-
tered field is used to determine the IFR and the
scattering pattern of the cylinder. A compact and
straightforward formulation for the IFR computation
was derived. The results obtained by this method verify
well with the scattering characteristics computed ana-
lytically or numerically by the method of moments or
finite element method. The unique features of the
focused beam system reduce measurement errors
caused by specular and diffuse reflections from adja-
cent objects. The new method complements Rusch’s
method. The information obtained on the scattering
pattern helps to refine the calculations of the scattering
analysis for large space frame radomes. 
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