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Abstract: In the last two decades, the statistical analysis of shape has become an actively studied field
and finds applications in a wide range of areas. In addition to algorithmic development, many
researchers have distributed end-user orientated toolboxes, which further enable the utilization of the
algorithms in an “off the shelf” fashion. However, there is little work on the evaluation and validation
of these techniques, which poses a rather serious challenge when interpreting their results. To address
this lack of validation, we design a validation framework and then use it to test some of the most
widely used toolboxes. Our initial results show inconsistencies and disagreement among four different
methods. We believe this type of analysis to be critical not only for the community of algorithm
designers but also perhaps more importantly to researchers who use these tools without
knowing the algorithm details and seek objective criteria for tool selection. Hum Brain Mapp 00:000—

000, 2014. © 2014 Wiley Periodicals, Inc.
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INTRODUCTION
Motivation and Background

Statistical shape analysis is a widely studied topic [Hei-
mann and Meinzer, 2009], with several proposed algo-
rithms (see Ashburner and Friston, 2000; Cates et al., 2008;
Dryden and Mardia, 1998; Gerig et al., 2001; Hufnagel
et al., 2007; Kim et al., 2012; Krim and Yezzi, 2007; Miller,
2004; Peter and Rangarajan, 2006; Rao and Suryawanshi,
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1996, 1998; Small, 1996; Styner et al., 2003; and Younes,
2010, to name just a few) and with findings in several
application areas such as biology [Ziezold, 1994], neuro-
science [Qiu et al., 2009], agriculture [Costa et al., 2011],
and paleontology [Shen et al., 2009].

Shape analysis has been of particular interest in neuro-
science where brain morphometry has been hypothesized
to be linked to various neurodevelopmental and/or neuro-
degenerative brain disorders [Chung et al., 2008; Joseph
et al., 2014; Kim et al., 2012; Qiu et al., 2009; Yang et al.,
2013; Younes et al., 2014]. To facilitate these analyses,
many researchers have translated prototype algorithms
into publicly available end-user oriented toolboxes, with
the claim that they can accurately detect statistically signif-
icant local shape changes between population (e.g., schizo-
phrenia vs. matched controls). As a result, users can easily
download and install a shape analysis toolbox “off the
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(a) SPHARM-PDM

(b) SPHARM-MAT

(c) ShapeWorks (d) TBM

Figure I.

Shape analysis results of the same sets of shapes using different
algorithms. Color indicates the statistically significant different
regions found by each method and gray means no difference.
Note that SPHARM-MAT uses the jet colormap whereas all the
others uses the reversed-jet colormap, also note that the Shape-

shelf” and apply it to their datasets. Unfortunately, very
little evaluation has been done on these pipelines. In fact,
when reviewing the literature, we did not find any reports
on the evaluation and validation of shape analysis frame-
works (although a few studies have evaluated subcompo-
nents of the pipelines [Munsell et al., 2008; Selvarajah and
Kodituwakku, 2010; Styner et al., 2007]). This lack of vali-
dation raises some serious concerns when using untested
shape analysis tools in brain imaging studies.

The goal of our work is to create such an evaluation
framework and present some preliminary results on com-
monly used shape analysis pipelines. Figure 1 shows the
output of our analysis of four different toolboxes using
two groups of synthesized shapes as input. One group
was artificially altered with known local deformations.
One can observe that the output varies significantly
between methods, which support the necessity of a sys-
tematic evaluation of statistical shape analysis algorithms.
To the best of our knowledge, this work is the first
addressing this problem. We believe that this type of anal-
ysis is not only informative for algorithm developers to
improve their techniques but also necessary knowledge to
be provided to the end-user community.

A shape evaluation platform has to provide two major
components: first, a large test dataset with known, measur-
able, and realistic deviations and second, a metric to eval-
uate the performance of the algorithm. We address the
first problem using manifold learning techniques to gener-
ate arbitrarily many new shapes based on a training set of
manually drawn neuroanatomical structures from brain
MRI data of a normal, healthy population. We then alter
some of the generated shapes with smooth and invertible
deformations to one or more local regions, consistently
located across the “synthetic abnormal” population. Then,
the second problem is addressed by defining a metric
measuring the matching between the constructed ground
truth and the results returned by each algorithm.

Works renders the surface with a different (glyph) manner.
With the same input shapes, inconsistency among the results
demonstrate the necessity of a systematic evaluation for statisti-
cal shape analysis methods.

A Brief Review of Shape Analysis Methods

Before we present our methodology in more detail, we
provide here a brief overview of different classes of shape
analysis methods. Note that we only tested a small subset
of these methods, as very few are publicly available and
reimplementing all these algorithms is beyond the scope
of this work.

Surface parametrization based methods

This group of algorithms performs a parametrization of
the surfaces, on a simple domain such as the sphere S”.
By treating the surfaces as functions on the simple domain
enable using various functional analysis techniques to
decompose the surfaces into coefficients of certain basis.
For example, in Gerig et al. [2001] and Styner et al. [2006],
the spherical harmonics were used. The inputs of the algo-
rithm are two groups of shapes represented by binary vol-
umetric images. After a topology correction step to ensure
the input shapes are of spherical topology, images are con-
verted to meshes. Next, an area-preserving, distortion-min-
imizing spherical mapping is performed to provide a
spherical parametrization of the surfaces, from which a
spherical harmonics description of the shapes can be com-
puted. The spherical harmonics are then sampled on the
triangulated meshes via icosahedron subdivision of the
spherical parametrization. Statistical tests are carried out
and the P-values are corrected for multiple comparison.

More recently, authors in Chung et al. [2008] use a
weighted-SPHARM scheme, where the deformable surface
registration in Davatzikos and Bryan [1996] was adopted
to map the surface to the sphere. Effectively, the
weighted-SPHARM is equivalent to performing a smooth-
ing convolution and it reduces the ringing effect of the
SPHARM representation especially for the high frequency
components, which correspond to the sharp feature of the
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shape. Along similar lines, the spherical wavelets have
been used in Nain et al. [2005].

SPHARM-MAT has a similar framework as the
SPHARM-PDM but uses a different strategy for spherical
parametrization, SPHARM coefficients computation, and
alignment [Shen et al., 2009]. In fact, it was one of the
design philosophies of this technique to have two simi-
lar tools under different platform (Matlab vs. C++) for:
“(1) flexibility for users to choose the platform they
favor and (2) opportunity for tool comparison and cross
validation [Shen, 2010].” In addition, SPHARM-MAT has
a slightly different spherical mapping and registration
scheme. As a result, evaluating the differences between
the two spherical harmonics-based methods would pro-
vide insight into how their different components affect
the final outcome.

Both SPHARM-PDM and SPHARM-MAT are publicly
available and we tested both tools.

Surface correspondence based methods

In this group of methods, researchers construct the cor-
respondence between the surfaces of the shapes. In Durrle-
man et al. [2008], Joshi et al. [1997], Vaillant and Glaunes
[2005], and Vaillant et al. [2007], the LDDMM scheme is
used for matching surfaces in which the flow field is a
geodesic in a Riemannian structure of diffeomorphism.
After the correspondences have been established, the dis-
crepancies in the corresponding points on the surfaces are
captured using statistical analysis tools. This is applied to
the study of the basal ganglia shapes in Qiu et al. [2009]
and hippocampus [Yang et al., 2013]. In Pichon et al.
[2006], a Laplace equation is solved between the shape
surfaces for constructing the correspondence. In both
methods, the vector flow field between the surfaces is
smooth and smoothly invertible.

Under the discrete setting, shapes have been modeled as
points (particles) sets where the particles are distributed
on the surfaces of all the shapes by optimizing an entropy-
based energy functional ([Cates et al., 2008], Scientific
Computing and Imaging Institute [SCI]. ShapeWorks: An
open-source tool for constructing compact statistical point-
based models of ensembles of similar shapes that does not
rely on specific surface parameterization). The resulting
particles are corresponding across the population.

The ShapeWorks algorithm is also available publicly
([Cates et al., 2008], Scientific Computing and Imaging
Institute [SCI]. ShapeWorks: An open-source tool for con-
structing compact statistical point-based models of ensem-
bles of similar shapes that does not rely on specific surface
parameterization) and was evaluated using our frame-
work. Note, however, that ShapeWorks does not provide
statistical testing, so we combined the point-wise corre-
spondence computed by ShapeWorks with the nonpara-
metric statistical analysis of SPHARM-PDM, to produce
results, whose formatting is similar to the other methods
tested.

Volumetric matching based methods

Building the correspondence lies in the center of the shape
analysis tasks. Instead of finding the correspondences
between surfaces, some approaches align volumetric repre-
sentations of shapes [Ashburner and Friston, 2000; Ash-
burner et al., 1998; Good et al., 2001; Zarei et al., 2011]. The
resulting deformation fields are then analyzed (a common
measure is the determinant of the Jacobian of the field).

In this work, we propose and implement a variant of
the tensor-based morphometry (TBM). TBM has been pro-
posed originally to be applied on gray scale images. As a
consequence, unlike surface-based methods, TBM can be
applied without a preceding segmentation step. Con-
versely, nonlinear gray scale image registration being itself
an active research topic may bring discrepancy into the
analysis when the registration is not perfect. To address
such an issue, Wang et al. [2011] proposed to use surface
registration to compute the deformation tensor, which
effectively incorporates the segmented object surfaces into
the registration for higher specificity. Along a similar
direction, in this work, we propose to perform the registra-
tion on the binary segmented images. This can be consid-
ered as applying the registration on the target’s density-
maps where the decision is binary. By doing this, we are
able to specifically focus on the shape of the interest and
ignore the influence from the surroundings, nearby or
remote. Moreover, registering binary maps can be applied
to situations with arbitrary shape topology.

Specifically, first, an unbiased mean shape u is created
by aligning all testing shapes to a mean shape estimate
using similarity transforms. The mean shape is then re-
estimated and the process is repeated until convergence.
Then, each aligned shape is deformably registered to p.
Then, the determinant of the Jacobian of the obtained dis-
placement field is computed. The resulting scalar valued
volumes are then mapped on the surface of p and com-
pared using a two sample student’s t-test to check for pop-
ulation differences. False discovery rate (FDR) correction is
applied to the resulting P-values to adjust for multiple
comparisons [Dudoit and van der Laan, 2008].

The choice of the deformable registration technique to
create the deformation field is often viewed as a critical
component to the quality of the output. For example, the
LDDMM registration is used in Beg et al. [2005], Durrle-
man et al. [2008], and B-spline-based registration techni-
ques can also be used [Ruckert et al.,, 1999; Ou et al,
2011]. In this work, we use the symmetric diffeomorphic
Demons algorithm [Vercauteren et al., 2009].

Other analysis methods

One common aspect all the methods presented above is
that they provide information about the location of shape
changes, usually in the form of a P-value map displayed on a
template shape. In contrast, other methods provide a single
low dimensional feature vector, which describes each shape.
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The output of a population study is usually a single number
indicating the “distance” between shapes without localizing
where the differences may be. For example, in Kim et al.
[2012], Niethammer et al. [2007], and Reuter et al. [2009], the
eigenvalues of the Laplace-Beltrami operator on the surfaces
are used for measuring the distance between any two shapes.
Similarly, the LDDMM metric [Beg et al., 2005] and the earth-
mover distance have also been used [Osada et al.,, 2001,
2002]. Another interesting group of methods describe shapes
using medial representations [Bouix et al., 2005; Gorczowski
et al., 2007; Siddiqi and Pizer, 2008] and provide local statis-
tics on a medial model. We decided not to include these last
two classes of methods in the current evaluation as their
inherent representation of shape was not directly comparable
to the surface based techniques.

In summary, our overarching goal was to provide a
framework that can be used to evaluate shape analysis
methods with a surface-based representation. We then
tested four readily available tools using this framework.
We did not perform an exhaustive evaluation of all avail-
able tools, but our sampling was sufficient to discover
large discrepancies in the output. We hope that such a
pilot study along with the evaluation datasets will encour-
age the community to test newly developed algorithms on
controlled datasets and help end-users to better evaluate
the tool they select before applying it to their data.

The remainder of the article is organized as follows. In
Materials and Methods section, we present the shape analysis
evaluation framework, this includes how to generate an arbi-
trary number of anatomically realistic shapes with known
and consistent deformations among them and quantitative
evaluation of shape analysis algorithms. Next in Experi-
ments, Validations, and Results section, we perform the eval-
uation of the four algorithms mentioned above and report
the results. Finally, future and ongoing work is discussed in
Discussion, Conclusions, and Future Work section.

MATERIALS AND METHODS

In this section, we first present a method to generate the
testing data necessary for evaluating shape analysis algo-
rithms, then we present our evaluation criteria and use the
full framework on some widely used algorithms/tools.

Shape Synthesis with Known Deformations

To generate many shapes with known deformations, we
use a manifold learning strategy for “normal” shape syn-
thesis. We then generate smooth and invertible deforma-
tion on a subset of the data to create an “abnormal”
population of shapes. A diagram of the shape and defor-
mation synthesis procedures is shown in Figure 2.

Shape sampling via manifold learning

Learning the underlying “manifold” of a set of shapes is
an active topic of research and remains an open problem.

In this work, however, we use manifold learning not so
much for discovering the underlying structure of the
shape space, but rather for providing a large set of realistic
test shapes based on a relatively small set of training
shapes. We also focus on shapes with relatively simple
geometrical complexity (caudate and basal ganglia), for
which the use of a standard manifold learning technique
(here Local Linear Embedding) is appropriate.

Assume we have a set of anatomical structures from a
normal control population represented by binary images:
S QCR— {0,1}; i=1,2,...,N, where Q is the com-
mon domain of the images. From these structures, the goal
of this subsection is to generate arbitrarily many similar
shapes to enrich the datasets.

Following Dryden and Mardia [1998] and Small [1996],
we define “shape” as the geometric features of an object that
are invariant to similarity transformations. Therefore, the
first step of our pipeline is to align all training images using
similarity transformations minimizing the mean-squared-
error. We denote the registered training shapes as
S;: =§j°Tj :Q —[0,1]; j=1,2,...,N. We note that we could
perform an unbiased population based registration, but our
experiments do not show this as a necessary step for the
purpose of generating new shapes from a learned manifold.

In a high dimensional shape space, the N training
shapes S;’s most likely reside on a manifold rather than in
a linear space [Dambreville et al., 2008; Joshi et al., 1997].
To generate arbitrarily many shapes of the same category,
one need to “sample” shapes by interpolating the training
shapes on the manifold. However, due the high dimen-
sional nature of the manifold, characterizing its topology
for interpolation is difficult. To overcome this problem, we
apply a local linear embedding method to map the high
dimensional manifold to a lower dimensional space, and
perform the interpolation therein [Roweis and Saul, 2000].
Let (ny,n,,n;) be the size of the binary volume S; and let
V; € RP, where D=n, - ny, - n, be a long vector representa-
tion of the binary image. First, we compute the weights
W={Wf};j =1, ..., k so that each vector V; can be repre-
sented by its k nearest neighbors with minimal error:

YW):= Y

i=12,...N

2
Vi— > W;
jekK; D

where K; is the index set of V;’s k nearest neighbors,
and Y, W}=1, Vi.

We then map V; to v; € R? using the singular value
decomposition, where d < D such that the following error
is minimized:

2
(D(vi) T i=12,...N

Vi— Z vaj
jeK;

d

Mapping the manifold to a locally linear lower dimen-
sional space enables us to locally approximate the topol-
ogy of the manifold with the Delaunay triangulation
[Cormen et al., 2001]. The local structure of the manifold
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(in low dimension) is thus characterized by the d-simplex
(e.g., triangle in 2D or tetrahedron 3D), and we can now
generate a sample on the manifold by interpolating it on
the d-simplex and then map it back to the high dimen-
sional space. Details on how a new random sample is esti-
mated are as follows. First, a d-simplex, along with its
associated shapes (V;, i=1, ..., d), is randomly selected
from the manifold, and a d-dimensional random vector r
€ R? is generated such that each of r’s components are
uniformly distributed on [0,1]. 7 is then normalized so that
|r];=1. After that, a new shape vector V* € RP can then be
generated as V*= ZZ 11V and reformatted to a volumet-
ric image U* € R® — [0,1]. Similar to the k parameter
above, larger d results in more shapes contributing in the
generation of the new shape, which usually cause the new
shape to be smoother. The above process can be repeated
infinitely, and allows us to create arbitrarily large test
datasets.

It is noted that learning the shape manifold and generating
new shapes are topics having been studied by many
researchers [Dambreville et al., 2008; Joshi et al., 1997; Ken-
dall, 1984; Siddiqi and Pizer, 2008], and we are not claiming
the proposed algorithm being superior to any of the existing
ones. In fact, we just find that such generation method is suf-
ficient for the central goal of shape analysis evaluation, with
good balance in shape versatility and computation load.

Shape abnormality simulation

In the context of medical studies, most statistical shape
analysis methods aim at examining whether there exist stat-
istically significant shape differences between two popula-
tions of anatomical structures [Dryden and Mardia, 1998].
The hypothesis is that a disease acts on the morphometry of
the anatomy in a consistent manner and can be detected,
localized, and measured with the appropriate tools. The
method described above is only able to generate large
“new” datasets similar to the training dataset. We thus need
to design an algorithm to introduce artificial, yet realistic
shape deformations to the data to mimic the action of a dis-
ease on an anatomical structure. In many cases, the anatomi-
cal abnormalities are hypothesized to be (i) located around

L A1 #7T0 N _},

similar regions across the shape population, and (ii) observ-
able locally as a protuberance/depression or more globally
as thinning/thickening of certain regions.

In what follows, we present a scheme that is able to
introduce controlled shape changes at similar regions
across a population. This is achieved by applying a joint
clustering algorithm to define a consistent parcellation
across all shapes in the population. The shapes are then
deformed using a diffeomorphic framework to simulate
smooth and realistic shape abnormalities.

Joint clustering. To find a common location among the
population to induce a deformation, a clustering of the
points on the shape boundary is performed jointly over all
shapes. As we will observe later, this not only addresses
the common location requirement but also allows us to
control the extent of a shape change over the object.

Let Ui = ., M be the generated sample shape binary
maps and CZ {617.. ,¢; } CR%i=1,...,M be their corre-
sponding triangulated surface meshes, with L; the number
of vertices in mesh C'. We first compute the outward normal
vector N : C' — R® for each vertex (j=1,...,L;). We then
represent each surface as a six- dlmenswnal feature vector
set Fi={f};j=1,...,L;} where f; : =(c| M\/’) € R® is a feature
vector, where )t weighs the Contributlon of the unit normal in
the clustering. Finally, the union of all feature vectors F : =
Ui, F; is clustered using the k-means algorithm [Duda et al.,
2001] and the resulting label of each vertex is denoted as
y; €. We incorporate the normal vector as a feature to
ensure that different “sides” in an object are not clustered
together, which could happen in very thin structures. The
normal vector is a natural choice to separate two sides of a
shape. It also allows to control the side on which an inflation
or deflation may be introduced.

Using k-means also allows us to control the scale of the
deformation, by simply changing the number of output clus-
ters. If the purpose is to evaluate shape analysis algorithms’
capability of discriminating small scale shape difference, the
number of cluster parameter is set to be large, usually result-
ing in small regions on the surface. Conversely, a small clus-
ter number will give large patches on the shape surface,
which indicates global scale shape deformation.

PV L)
P Rt It

S\
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J

SPHARM-PDM

A58 27T 1. SPHARM-MAT

J 1! -~ 1‘! ;A 1’ N ShapeWorks
TBM

Figure 2.
Evaluate four shape analysis toolboxes using the generated shapes from Figure 2.
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Diffeomorphic  deformation. Once the clustering is
obtained, any cluster (or combination of clusters) can be
selected to be deformed. Both inward and outward defor-
mations can be chosen as they can mimic true anatomical
phenomena. For instance, to model a local bulge (on a
small scale) or thickening (on a large scale), the deforma-
tion direction should be aligned with the outward normal.
However, simply deforming the patch by pulling all clus-
ter (patch) coordinates by an arbitrary amount in the nor-
mal direction has two significant problems. First, the
deformation would not be smooth; and second, the
deformed patch could collide or merge with other parts of
the object, which would be anatomically unrealistic, as
shown in Figure 3b. To solve these problems, we use the
Log-Euclidean framework of Arsigny et al. [2009] to gener-
ate diffeomorphic deformations, which will be smooth and
preserve the topology of the object.

Without loss of generality, let G={c]’: : y]‘:=10} C R® be the
patch to be deformed by an affine transformation denoted
as a 4X4 homogeneous matrix. Directly applying the affine
transformation to the points of G is problematic, because it
will cause discontinuity. Instead, we smoothly extend the
effect of the deformation to the entire image domain so as
to make the deformation a diffeomorphism. This is done
by first defining a weighting function: w : R®* — R"as

. 2
w(x)=exp <_m1ngecx g )

(e

The function w indicates how strong the deformation
vector will affect a spatial point located at x and the o
parameter controls the smoothness of the deformation.

Although directly using w to modulate the deformation
would result in a nondiffeomorphic transformation, one
can use the Log-Euclidean approach described in
Arsigny et al. [2009], to generate a diffeomorphic map-
ping. First, the matrix logarithm of H, #, is computed
[Golub and Van Loan, 1996] and the weighting function
w applied to # : Z(x)=w(x) # . The diffeomorphic trans-

formation is obtained by applying the matrix exponential
to Z:Z(x)=expm(Z(x)), and all surface points can be
diffeomorphically transformed as

=+ Z(c);j=1,....Lii=1,....M

for the vertex on the deformed mesh with its corre-
sponding deformed volume

U;=U;(x—Z(x));i=1,...,.M

Now we have all the elements required to generate syn-
thetic large test datasets for the purpose of evaluating
shape analysis tools.

Tests on Statistical Shape Analysis Methods

Having set up the testing shapes, the generated shapes
are given as input to several shape analysis algorithms to
evaluate their abilities in capturing the shape differences.
Schematically, after the shape generation in Figure 4, the
nondeformed and deformed shapes are input to four anal-
ysis toolboxes, as shown in Figure 4.

Mathematically, first, all the M newly generated shapes,
U;: R® - [0,1]; i=1,...,M, are deformed in a consistent
way and result in deformed shapes Ul, i=1,...,M. Then,
without loss of generality, half of the nondeformed shapes
U;: R® — [0,1]; i=1,...,M/2 are considered as the “normal
group,” whereas the other half from the deformed group,
U;; i=M/2,...,M, are regarded as the “abnormal group.”

The two groups of shapes are input to four well-known
and publicly available statistical shape analysis algorithms re-
viewed in A Brief Review of Shape Analysis Methods section:
SPHARM-PDM, SPHARM-MAT, ShapeWorks, and TBM.

Qualitative and Quantitative Analysis

To visualize the results, the P-value maps computed by
each of the four shape analysis methods are plotted on

Figure 3.
In order to model a lateral swelling of the right caudate head, the yellow region in the original
surface, shown in (a), is to be deformed. If an expansion vector field is directly applied, the sur-
face protrudes into the putamen (b). Using the proposed method, the expansion becomes dif-
feomorphic (c) and the putamen retreats smoothly to avoid the collision.
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Figure 4.

Diagram of shape and deformation synthesis. Starting from a set of training shapes, the generate
shape step uses the manifold learning to generate an arbitrary number of similar shapes. A joint
clustering parcellates shapes into regions consistent across the population. Finally, the deforma-
tion step deforms the shapes using diffeomorphic transformations.

their respective mean shape. These colored mean shapes
allow us to locate areas of differences between population
as detected by the methods tested.

In addition to the visual illustration of the location and
the scale of the detected shape difference region, we fur-
ther quantitatively evaluate the quality of each tool by
computing the ratio between the area of deformation and
the area of the entire shape. This ratio is computed for
each analysis methods and compared to a gold standard
ratio as described below.

First, one has to make a clear definition for the “region
of deformation” (ROD). For the “ground truth,” due to the
fact that we have the nondeformed control for each of
the deformed shapes, we define the ROD as the region on
the nondeformed control shape where the distance to the
deformed counterpart exceeds a given threshold. Formally,
given a shape pair U; and its deformed version U;, a dis-
tance map is defined on the 0.5-isosurface of U;, oU;, as
the shortest distance to the 0.5-isosurface of U;. Then, the
distance is sorted and the ROD is defined as the region
whose distance value exceeds 5% of all the distances. The
area of ROD is divided by the total surface area of OUj;,
resulting for each U; an area ratio value a;. The mean of
ai’s,i=1, ..., M, now serves as the gold standard ratio.

The ROD on the mean shapes resulting from the shape
analysis methods is defined as the region whose P-value
(after FDR correction) is less or equal than 0.05. The area
of this region, divided by the total surface area of the
mean shape, is also recorded and denoted as a’. One spe-
cial case is the results of the ShapeWorks where no surface
is defined. To resolve that problem, the ratio is taken
between the number of points whose P-value is less or
equal than 0.05 with the total number of points.

While we realize that this ratio measure has clear limita-
tions, as the same ratio could stem from many different
spatial configurations, we believe that this number in com-
bination with the P-value plots is an informative way to
evaluate shape analysis output. Ideally, one would want
to be able to measure the overlap between the ground
truth deformation and the detected deformation, as is
often done with the Dice coefficient for evaluating image
segmentation [Dice, 1945]. However, the P-value maps are
defined on different template/mean shapes for different
methods and would require building a “between-mean-
shape” correspondence, which is in fact implicitly another
shape analysis algorithm, and will almost inevitably intro-
duce bias in the results.

The entire shape evaluation framework is given in
Algorithm 1.

Algorithm 1. Shape analysis evaluation

1. Generate M shapes U; i=1,...,
shapes

2. Deform shapes U; to U; to represent the abnormal
shapes

3. Input shapes U;; i=1,...,M/2 and U;: i=M/2,...,
M to a shape analysis method

4. Display the mean shape and the P-value map on the
mean shape surface

5. Extract ROD from the U; and U; pairs (ground

truth)

Extract ROD from P-value map

7. Compute ratio of areas

M from N training

S
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Figure 5.
An example set of left and right caudates (a) manually traced and used for training, and four syn-
thetic shapes (b—e) generated through manifold learning.

EXPERIMENTS, VALIDATIONS, AND RESULTS

In this section, we first demonstrate the output of the
shape generation algorithm based on two neuroanatomical
structures. One is the caudate nucleus, and the other is the
striatum (which includes the caudate). The newly gener-
ated shapes used to evaluate the four shape analysis algo-
rithms are presented in Evaluation of Statistical Shape
Analysis Methods section.

Shape Generation

We demonstrate the shape generation algorithm applied
to binary maps representation of the caudate nucleus and
the full striatum. All binary maps were selected from man-
ual tracings of neuroanatomical structures in our MRI
database of healthy controls. The training sample sizes
were 30 for the caudate and 27 for the striatum. Based on
Gao and Bouix [2012], the k, d, and © parameters, there
are fixed to 5, 3, and 2 for all the tests. Figure 5 shows
four generated caudate shapes and Figure 6 shows four
generated striatum shapes.

Figure 7 shows examples of deformed striatum shapes
mimicking a thickening or thinning of the head of the cau-
date. Such shapes can then be used for testing and evalu-
ating statistical shape analysis algorithms.

Evaluation of Statistical Shape Analysis Methods

In this section, we use the synthetically generated cau-
date nuclei and the striatums to test the ability of four sta-

tistical shape analysis methods to identify the location and
magnitude of the shape differences.

The caudate shape is used due to its relative simplicity,
spherical topology, and its shape being related to many
brain disorders (e.g., Levitt et al., 2009). M = 80 shapes are
generated and 40 are randomly selected to be deformed.
In Figure 8, three examples of “before and after” shape
pairs for to different deformations are shown. Using these
pairs, we can compute the ground truth ROD and corre-
sponding gold standard ratio, which in combination char-
acterize the region, scale, and magnitude of the
deformation. The color map on the shapes in the first row
shows the point-wise distance to the corresponding shapes
in the second row. Looking at Figure 8, we anticipate that
detecting the synthesized atrophy at the caudate head may
be a relative easy task while the detection of the small
bend at the tail on the right caudates will be more
challenging.

For the second set of experiments, we use the shape of
the striatum because it is a more complex structure and a
more challenging task for the shape analysis tools. Simi-
larly to the caudate, we generate M =80 new shapes and
deform half of them. Different deformations are applied
independently to the right and left striatum. Examples of
deformed striatums are shown in Figure 9. On the left
striatum, the medial side of the putamen was “pushed in.”
The deformation was significant enough that the lateral
side of the putamen was slightly inflated due to the diffeo-
morphic nature of the deformation. Effectively, this defor-
mation can be interpreted as atrophy on the medial side, a
slight swelling on the lateral side, and a slight bending of

Figure 6.
A sample striatum shape used for training (a) and four striatum shapes (b—e) generated through
manifold learning.
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Figure 7.
Four sets of deformed shapes. The four subfigures underlined with a red bar (b, e, h, k) are
four synthetic “normal” samples. Those to their left, are significantly thickened on the lateral
side of the right caudate in the area highlighted in yellow. Those to their right, are more moder-
ately thinned on the medial side of the right caudate, indicated by the yellow arrow.

the putamen toward the lateral direction. For the right
striatum, we simulated a smaller atrophy on the putamen
near the connecting region with the caudate.

Furthermore, note that the left and right sides of both
the caudate and the striatum were analyzed independ-
ently, as many of the methods tested can only handle
objects of spherical topology. In what follows, the findings
of the four statistical shape analysis methods are reported
and their performances are evaluated.

Analysis on generated non-deformed shapes

First, we checked that no statistically significant differ-
ences were found between groups of synthetically gener-
ated shapes regions which did not undergo any artificial
deformation. To test this, we input U;; i=1,...,M/2 and
U;; i=M/2,...,M as two different groups to the four algo-
rithms. All shape analysis algorithms tested found no stat-
istically ~ significant differences between these two
“normal” groups.

This result suggests that our manifold learning proce-
dure indeed produces shapes of similar morphometry as
all shape analysis methods produce the same negative
finding. Furthermore, it also increases our confidence that

when we do introduce a deformation, the shape analysis
method tested, if accurate, should only detect that defor-
mation and nothing else.

Evaluation results

As outlined in the Materials and Methods section, we
tested four different shape analysis pipelines. Details about
their respective settings are given below

e SPHARM-PDM: As suggested by the software man-
ual, for the caudate, we set the icosahedral subdivi-
sion level to 21 so that the resulting surface has 4,412
vertices. Moreover, the maximum spherical harmonics
degree is set to 15. For the striatum, the level of icosa-
hedral subdivision is set to 23 and the maximal
degree of spherical harmonics is set to 15. After the
spherical mapping and spherical harmonics decompo-
sition, an optional step consists of performing align-
ment of the shapes. Due to the fact that our input
shapes have been registered before they are gener-
ated, this step is not performed. Of note, the spherical
mapping did not successfully complete for three

Figure 8.
Example of benchmark caudate shapes with know deformation. Top row: examples of the gener-
ated left caudates (a, b, c) and right caudates (d, e, f). Colormap indicates the regions of defor-
mations with respect to the bottom row, which shows the respectively deformed shapes.
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Figure 9.
Ground truth of three generated left striatum shapes (three left columns) and three right stria-
tum shapes (three right columns) with know deformation region. The top row: the views from
the medial side and the bottom row shows the lateral views. Colormap on the shapes indicates
the location and magnitude of the artificial deformations with respect to their corresponding
shapes. Blue means no deformation. By design, the deformation on the left striatum is larger and
stronger than that on the right side.

caudate cases and they were excluded from further
processing.

e SPHARM-MAT: The settings are kept consistent with
SPHARM-PDM. Specifically, we set MeshGridSize to
50, MaxSPHARMDegree to 15, Tolerance to 2,
Smoothing to 2, Iteration to 100, and Locallteration to
10. Two caudate shapes and one striatum shape
whose spherical mappings are not correct are
removed from further processing. Moreover, the FDR
correction is added to the end of the processing to
correct the output P-values (The original software
does not perform FDR correction). In the output dis-
play, SPHARM-MAT uses a color map where blue
indicates close-to-zero P-values, which is opposite to
the other methods.

e ShapeWorks: The binary images are input to the algo-
rithm. The parameters antialias_iterations and blur_-
sigma are set to 20 and 2.0, respectively. For each
shape, 4,096 particles are used. We tested the algo-
rithm using more particles but no visible improve-
ment was observed. The output of the ShapeWorks
algorithm is a set of independent particles with no
information about connectivity or topology. Surface
reconstruction is available in the software, but our
experience is that it can be unstable and may add an
unnecessary variable to our evaluation. We thus
decided to only use the particles and display them as
small spherical glyphs with the P-values on the
glyphs. This results in “rugged” figures, although we
believe they are more representative of the method
than surfaces.

e TBM: The binary images are input to the algorithm.
The ITK software package is used to perform the vol-
umetric registration [Ibanez et al., 2003]. Then, the
mean shape surface is extracted using the marching
cube algorithm [Lorensen and Cline, 1987] on which

the tensor fields are extracted from the registration
deformation field and the statistical analysis is
performed.

The results of the evaluations for the caudate shape are
summarized in Figure 10. SPHARM-PDM presents many
false-positive regions, even after the P-value maps have
been FDR corrected. ShapeWorks, after FDR correction,
correctly captures the ROD on the left caudate. However,
FDR corrected P-values maps do not show any significant
regions for the right caudate. Before FDR correction,
although some scattered locations are detected, they are
not consistent with the ground truth. For SPHARM-MAT,
one can observe that the region of shape change on the
left caudate, though smaller than anticipated, is captured.
This improved accuracy over SPHARM-PDM may be
explained by the different spherical mapping scheme used
to minimize both angle and area distortion [Shen and
Makedon, 2006]. However, on the right side the method
underperforms, as too many regions are considered to be
statistically different. Finally, TBM does not correctly iden-
tify the deformation for the left caudate. Instead, the result
indicates that there are deformations on the medial and
lateral sides near the caudate head. However, regions
identified as different by TBM coincide with the ground
truth very well on the right caudate.

Next, testing was performed using the striatum and the
results of the evaluations are summarized in Figure 11.

One can observe that the atrophy in the right striatum is
nicely captured by SPHARM-PDM. With FDR correction,
ShapeWorks does not give any significant region. Without
FDR correction (displayed in Fig. 11), the regions with sig-
nificant differences on the left striatum reside in the puta-
men region; and the regions reaching significance
differences on the right striatum are mostly around the
region connecting the putamen and the caudate. Such
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TBM

Figure 10.
Results of the caudate. Shown here are the FDR corrected P-value map plotted on the mean
shapes computed by different algorithms. P-values larger than 0.05 are shown in gray. Please
refer to text for algorithm specific settings.

L 0.'0_25 " _0'05 Striatum right

e —

Striatum left

4

SPHARM-PDM

Figure 11.
Results of the striatum. Shown here are P-value map plotted on the mean shapes computed by
the different algorithms. P-values larger than 0.05 are shown in gray. All P-value maps presented
underwent FDR correction, except for ShapeWorks, as no regions survived the FDR threshold.
The maps for this method are of raw P-values.
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TABLE I. The area ratio of the ground truth and all methods

Ground truth SPHARM-PDM ShapeWorks SPHARM-MAT TBM
Left caudate 0.17 0.81 0.18 0.09 0.17
Right caudate 0.13 0.65 0 0.74 0.03
Left striatum 0.33 0.61 0 N/A 0.17
Right striatum 0.15 0.10 0 N/A 0.01

All P values have been FDR corrected.

results are consistent with the ground truth presented in
Figure 9, although spatially sparse and with weak P-val-
ues. SPHARM-MAT was not able to converge and no
results could be displayed. TBM captured differences con-
sistent with the ground truth for both location and size.

Quantitative Evaluation of the Results

While in the above section, we provide a visual illustra-
tion of the location and the scale of the detected shape dif-
ference region, in this section, we quantitatively evaluate
the ROD and the results are given in Table I.

One should note that the numbers in the table should be
analyzed in conjunction with the P-value maps. Indeed,
even though the area ratios of significance can be identical,
the locations may differ. Overall, TBM has significance
ratios closer to the ground truth, although it underesti-
mates the areas of change. SPHARM-PDM, conversely,
overestimates the amount of true deformation. Other kinds
of quantitative measures need to be investigated and we
discuss this in Discussion, Conclusions, and Future Work
section.

DISCUSSION, CONCLUSIONS,
AND FUTURE WORK

In this work, we first present a framework for the gener-
ation of synthetic datasets for the purpose of evaluating
shape analysis algorithms. A manifold learning technique
allows us to generate arbitrarily many shapes, and the
combination of a joint clustering and diffeomorphic trans-

=

b

formation generation can simulate realistic, robust, and
controlled deformations. Then, we perform an evaluation
on well known statistical shape analysis algorithms using
synthetically generated shapes.

For future work, we will investigate the influences of
two factors in the shape analysis. First, it can be observed
that registration plays an important role in the shape anal-
ysis framework. Due to the complexity of the shape that
may be encountered in various applications, state-of-the-
art registration techniques should be used accordingly.
Moreover, based on the shape representation (volumetric/
surface/points) adopted by different methods, the corre-
sponding registration techniques should be selected.
Indeed, different shape analysis algorithms have different
ways to represent the shape, and therefore different subse-
quent processes. In fact, a precise quantitative analysis of
shape study result is still an area of active research for us.
However, we do think that the approximate location and
magnitude of the known shape change should be consist-
ent across methods, which can be qualitatively evaluated
by the human eye with the figures we present in the arti-
cle. This is particularly true when the group-wise deforma-
tions are relatively small. When the deformation is large,
however, there may be ambiguity in how to represent and
interpret the final comparison results.

For example, the two shapes in Figure 12a. Depending
on different shape representation and subsequently differ-
ent registration scheme being used, the algorithm may
report that the orange one has a bended tail Figure 12b;
the orange one has a bended head Figure 12c; they have
deformation all over the entire shape Figure 12d. In such
large and wide-spread deformation cases, we think

==

c d

Figure 12.
Ambiguity in case the deformation is large/global. (a) Two different shapes with large difference.
(b) If the heads are aligned, the algorithm will report the orange one has a bended tail. (c) If the
tails are aligned, the algorithm will report the orange one has a bended head. (d) If they are
aligned by minimizing L2 distance, the algorithm will report the orange one has deformation

everywhere.
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algorithms giving results as in Figure 12b-d are all
“correct” by emphasizing certain aspects of the shapes.
Consequently, we may not expect these to be comparable
to the same standard.

The second important factor is the construction of the
correspondence. Most shape analysis methods, explicitly
or tacitly, build the correspondence among the shapes for
comparison. The influence of this step has been studied in
Munsell et al. [2008] and Styner et al. [2007]. With the pro-
posed framework, we will further perform quantitative
evaluation of different correspondence construction
methods.

One important future direction of the proposed frame-
work is to provide better quantitative measures for the eval-
uation. Our use of the area ratio together with the visual
assessment of P-value maps give an indication of how vari-
ous shape analysis methods perform. However, the area
ratio alone is not sufficient to quantify the spatial accuracy
of the methods. Ideally, one would want to be able to mea-
sure the overlap between the ground truth deformation and
the detected deformation. This poses a serious challenge as
the ground truth and algorithm output would have to be
put in correspondence, which in itself would be another
shape analysis algorithm. Another approach is to transfer
scalar information about distortion on each shapes surface
(see Fig. 8) through the analysis pipelines and evaluate the
P-value map against this ground truth. This involves modi-
fying the shape analysis techniques, and currently, we are
actively working on finding better ways to quantitatively
evaluate both location and extent accuracy.
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