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Abstract. 3D cardiac MR imaging enables accurate analysis of cardiac
morphology and physiology. However, due to the requirements for long
acquisition and breath-hold, the clinical routine is still dominated by
multi-slice 2D imaging, which hamper the visualization of anatomy and
quantitative measurements as relatively thick slices are acquired. As a
solution, we propose a novel image super-resolution (SR) approach that
is based on a residual convolutional neural network (CNN) model. It
reconstructs high resolution 3D volumes from 2D image stacks for more
accurate image analysis. The proposed model allows the use of multiple
input data acquired from different viewing planes for improved perfor-
mance. Experimental results on 1233 cardiac short and long-axis MR
image stacks show that the CNN model outperforms state-of-the-art SR
methods in terms of image quality while being computationally efficient.
Also, we show that image segmentation and motion tracking benefits
more from SR-CNN when it is used as an initial upscaling method than
conventional interpolation methods for the subsequent analysis.

1 Introduction

3D magnetic resonance (MR) imaging with near isotropic resolution provides
a good visualization of cardiac morphology, and enables accurate assessment
of cardiovascular physiology. However, 3D MR sequences usually require long
breath-hold and repetition times, which leads to scan times that are infeasible
in clinical routine, and 2D multi-slice imaging is used instead. Due to limitations
on signal-to-noise ratio (SNR), the acquired slices are usually thick compared to
the in-plane resolution and thus negatively affect the visualization of anatomy
and hamper further analysis. Attempts to improve image resolution are typically
carried out either during the acquisition stage (sparse k-space filling) or retro-
spectively through super resolution (SR) of single/multiple image acquisitions.

Related work: Most of the SR methods recover the missing information
through the examples observed in training images, which are used as a prior
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Fig. 1. The low resolution image (a) is upscaled using linear (b) and cubic spline (c)
interpolations, and the proposed method (d) which shows a high correlation with the
ground-truth high resolution image (e) shown on the rightmost.

to link low and high resolution (LR-HR) image patches. Single image SR meth-
ods, based on the way they utilize training data, fall into two categories: non-
parametric and parametric. The former aims to recover HR patches from LR
ones via a co-occurrence prior between the target image and external training
data. Atlas-based approaches such as the patch-match method [15] and non-local
means based single image SR [10] methods are two examples of this category.
These approaches are computationally demanding as the candidate patches have
to be searched in the training dataset to find the most suitable HR candidate.
Instead, compact and generative models can be learned from the training data
to define the mapping between LR and HR patches. Parametric generative mod-
els, such as coupled-dictionary learning based approaches, have been proposed
to upscale MR brain [14] and cardiac [3] images. These methods benefit from
sparsity constraint to express the link between LR and HR. Similarly, random
forest based non-linear regressors have been proposed to predict HR patches
from LR data and have been successfully applied on diffusion tensor images
[1]. Recently, convolutional neural network (CNN) models [5,6] have been put
forward to replace the inference step as they have enough capacity to perform
complex nonlinear regression tasks. Even by using a shallow network composed
of a few layers, these models [6] achieved superior results over other state-of-the-
art SR methods.

Contributions: In the work presented here, we extend the SR-CNN proposed by
[5,6] with an improved layer design and training objective function, and show its
application to cardiac MR images. In particular, the proposed approach simpli-
fies the LR-HR mapping problem through residual learning and allows training
a deeper network to achieve improved performance. Additionally, the new model
can be considered more data-adaptive since the initial upscaling is performed by
learning a deconvolution layer instead of a fixed kernel [6]. More importantly, a
multi-input image extension of the SR-CNN model is proposed and exploited to
achieve a better SR image quality. By making use of multiple images acquired
from different slice directions one can further improve and constrain the HR
image reconstruction. Similar multi-image SR approaches have been proposed
in [11,12] to synthesize HR cardiac images; however, these approaches did not
make use of available large training datasets to learn the appearance of anatom-
ical structures in HR. Compared to the state-of-the-art image SR approaches
[6,15], the proposed method shows improved performance in terms of peak
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Fig. 2. The proposed single image super resolution network model

signal-to-noise-ratio (PSNR) and structural similarity index measure (SSIM)
[18]. We show that cardiac image segmentation can benefit from SR-CNN as
the segmentations generated from super-resolved images are shown to be sim-
ilar to the manual segmentations on HR images in terms of volume measures
and surface distances. Lastly, we show that cardiac motion tracking results can
be improved using SR-CNN as it visualizes the basal and apical parts of the
myocardium more clearly compared to the conventional interpolation methods
(see Fig. 1).

2 Methodology

The SR image generation is formulated as an inverse problem that recovers the
high dimensional data through the MR image acquisition model [7], which has
been the starting point of approaches in [3,11,15]. The model links the HR
volume y ∈ R

M to the low dimensional observation x ∈ R
N (N � M) through

the application of a series of operators as: x = DBSMy + η where M defines
the spatial displacements caused due to respiratory and cardiac motion, S is
the slice selection operator, B is a point-spread function (PSF) used to blur the
selected slice, D is a decimation operator, and η is the Rician noise model. The
solution to this inverse problem estimates a conditional distribution p(y|x) that
minimizes the cost function Ψ defined by y and its estimate Φ(x,Θ) obtained
from LR input data. The estimate is obtained through a CNN parameterized by
Θ that models the distribution p(y|x) via a collection of hidden variables. For the
smooth �1 norm case, the loss function is defined as min

Θ

∑
i Ψ�1 (Φ(xi,Θ) − yi),

where Ψ�1(r) = {0.5 r2 if |r| < 1 , |r| − 0.5 otherwise} and (xi,yi) denote the
training samples. The next section describes the proposed CNN model.

Single Image Network: The proposed model, shown in Fig. 2, is formed by
concatenating a series of convolutional layers (Conv) and rectified linear units
(ReLU) [8] to estimate the non-linear mapping Φ, as proposed in [6] to upscale
natural images. The intermediate feature maps h

(n)
j at layer n are computed

through Conv kernels (hidden units) wn
kj as max

(
0,

∑K
k=1 h

(n−1)
k ∗ wn

kj

)
= hn

j
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Fig. 3. The proposed Siamese multi-image super resolution network model.

where ∗ is the convolution operator. As suggested by [16], in order to obtain
better non-linear estimations, the proposed architecture uses small Conv kernels
(3 × 3 × 3) and a large number of Conv+ReLU layers. Such approach allows
training of a deeper network. Different to the models proposed in [5,6], we include
an initial upscaling operation within the model as a deconvolution layer (Deconv)
(x ↑ U) ∗ wj = h0

j where ↑ is a zero-padding upscaling operator and U = M/N
is the upscaling factor. In this way, upsampling filters can be optimized for SR
applications by training the network in an end-to-end manner. This improves the
image signal quality in image regions closer to the boundaries. Instead of learning
to synthesize a HR image, the CNN model is trained to predict the residuals
between the LR input data and HR ground-truth information. These residuals
are later summed up with the linearly upscaled input image (output of Deconv
layer) to reconstruct the output HR image. In this way, a simplified regression
function Φ is learned where mostly high frequency signal components, such as
edges and texture, are predicted (see Fig. 2). At training time, the correctness of
reconstructed HR images is evaluated based on the Ψ�1(.) function, and the model
weights are updated by back-propagating the error defined by that function. In
[19] the �1 norm was shown to be a better metric than the �2 norm for image
restoration and SR problems. This is attributed to the fact that the weight
updates are not dominated by the large prediction errors.

Multi-image Network: The single image model is extended to multi-input
image SR by creating multiple input channels (MC) from given images which
are resampled to the same spatial grid and visualize the same anatomy. In this
way, the SR performance is enhanced by merging multiple image stacks, e.g.
long-axis (LAX) and short axis (SAX) stacks, acquired from different imaging
planes into a single SR volume. However, when only a few slices are acquired, a
mask or distance map is required as input to the network to identify the missing
information. Additionally, the number of parameters is supposed to be increased
so that the model can learn to extract in image regions where the masks are
defined, which increases the training time accordingly. For this reason, a Siamese
network [4] is proposed as a third model (see Fig. 3) for comparison purposes,
which was used in similar problems such as shape recognition from multiple
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Table 1. Quantitative comparison of
different image upsampling methods.

Exp (a) PSNR (dB) SSIM # Filter/ Atlas

Linear 20.83±1.10 .70±.03 –

CSpline 22.38±1.13 .73±.03 –

MAPM 22.75±1.22 .73±.03 350

sh-CNN 23.67±1.18 .74±.02 64,64,32,1

CNN 24.12±1.18 .76±.02 64,64,32,16,8,4,1

de-CNN 24.45±1.20 .77±.02 64,64,32,16,8,4,1

Fig. 4. Results on the testing data,
PSNR (solid) and SSIM (dashed)

images [17]. The first stage of the network resamples the input images into a
fixed HR spatial grid. In the second stage the same type of image features are
extracted from each channel which are sharing the same filter weights. In the final
stage, the features are pooled and passed to another Conv network to reconstruct
the output HR image. The view pooling layer averages the corresponding features
from all channels over the areas where the images are overlapping. The proposed
models are initially pre-trained with small number of layers to better initialize
the final deeper network training, which improves the network performance [5].

3 Results

The models are evaluated on end-diastolic frames of cine cardiac MR images
acquired from 1233 healthy adult subjects. The images are upscaled in the direc-
tion orthogonal to the SAX plane. The proposed method is compared against
linear, cubic spline, and multi-atlas patchmatch (MAPM) [15] upscaling meth-
ods in four different experiments: image quality assessment for (a–b) single and
multi-input cases, (c) left-ventricle (LV) segmentation, (d) LV motion tracking.

Experimental details: In the first experiment, an image dataset containing
1080 3D SAX cardiac volumes with voxel size 1.25 × 1.25 × 2.00 mm, is ran-
domly split into two subsets and used for single-image model training (930)
and testing (150). The images are intensity normalized and cropped around the
heart. Synthetic LR images are generated using the acquisition model given in
Sect. 2, which are resampled to a fixed resolution 1.25 × 1.25 × 10.00 mm. The
PSF is set to be a Gaussian kernel with a full-width at half-maximum equal
to the slice thickness [7]. For the LR/HR pairs, multiple acquisitions could be
used as well, but an unbalanced bias would be introduced near sharp edges due
to spatial misalignments. For the evaluation of multi-input models, a separate
clinical dataset of 153 image pairs of LAX cardiac image slices and SAX image
stacks are used, of which 10 pairs are split for evaluation. Spatial misalignment
between SAX and LAX images are corrected using image registration [9]. For
the single/multi image model, seven consecutive Conv layers are used after the
upscaling layer. In the Siamese model, the channels are merged after the fourth
Conv layer.
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Table 2. Image quality results obtained with three different models: single-image de-
CNN, Siamese, and multi-channel (MC) that uses multiple input images.

Exp (b) de-CNN (SAX) Siamese
(SAX/4CH)

MC (SAX/4CH) MC (SAX/2/4CH)

PSNR (dB) 24.76±0.48 25.13±0.48 25.15±0.47 25.26±0.37

SSIM .807±.009 .814±.013 .814±.012 .818±.012

p - values 0.005 0.016 0.017 -

Table 3. Segmentation results for different upsampling methods, CSpline (p = .007)
and MAPM (p = .009). They are compared in terms of mean and Hausdorff distances
(MYO) and LV cavity volume differences (w.r.t. manual annotations).

Exp (c) Linear CSpline MAPM de-CNN High Res

LV Vol Diff (ml) 11.72±6.96 10.80±6.46 9.55±5.42 9.09±5.36 8.24±5.47

Mean Dist (mm) 1.49±0.30 1.45±0.29 1.40±0.29 1.38±0.29 1.38±0.28

Haus Dist (mm) 7.74±1.73 7.29±1.63 6.83±1.61 6.67±1.77 6.70±1.85

Image Quality Assessment: The upscaled images are compared with the
ground-truth HR 3D volumes in terms of PSNR and SSIM [18]. The latter mea-
sure assesses the correlation of local structures and is less sensitive to image
noise. The results in Table 1 show that learning the initial upscaling kernels (de-
CNN) can improve (p = .007) the quality of generated HR image compared to
convolution only network (CNN) using the same number of trainable parame-
ters. Additionally, the performance of 7-layer network is compared against the
4-layer shallow network from [6] (sh-CNN). Addition of extra Conv layers to the
7-layer model is found to be ineffective due to increased training time and negli-
gible performance improvement. In Fig. 4, we see that CNN based methods can
learn better HR synthesis models even after a small number of training epochs.
On the same figure, it can be seen that the model without the residual learning
(nrCNN) underperforms and requires a large number of training iterations.

Multi-input Model: In the second experiment, we show that the single image
SR model can be enhanced by providing additional information from two and
four chamber (2/4CH) LAX images. The results given in Table 2 show that by
including LAX information in the model, a modest improvement in image visual
quality can be achieved. The improvement is mostly observed in image regions
closer to areas where the SAX-LAX slices overlap, as can be seen in Fig. 5 (a–
d). Also, the results show that the multi-channel (MC) model performs slightly
better than Siamese model as it is given more degrees-of-freedom, whereas the
latter is more practical as it trains faster and requires fewer trainable parameters.

Segmentation Evaluation: As a subsequent image analysis, 18 SAX SR
images are segmented using a state-of-the-art multi-atlas method [2]. The
SR images generated from clinical 2D stack data with different upscaling
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Fig. 5. The LV is better visualized by using multi-input images (b,d) compared to
single image SR (a,c). Also, the proposed method (g) performs better than MAPM
[15] (f) in areas where uncommon shapes are over-smoothed by atlases.

methods are automatically segmented and those segmentations are compared
with the manual annotations performed on ground-truth HR 3D images. Addi-
tionally, the HR images are segmented with the same method to show the lower
error bound. The quality of segmentations are evaluated based on the LV cavity
volume measure and surface-to-surface distances for myocardium (MYO). The
results in Table 3 show that CNN upscaled images can produce segmentation
results similar to the ones obtained from HR images. The main result difference
between the SR methods is observed in image areas where thin and detailed
boundaries are observed (e.g. apex). As can be seen in Fig. 5 (e–h), the MAPM
over-smooths areas closer to image boundaries. Inference of the proposed model
is not as computationally demanding as brute-force searching (MAPM), which
requires hours for a single image, whereas SR-CNN can be executed in 6.8 s
on GPU or 5.8 min CPU on average per image. The shorter runtime makes the
SR methods more applicable to subsequent analysis, as they can replace the
standard interpolation methods.

Motion Tracking: The clinical applications of SR can be extended to MYO
tracking as it can benefit from SR as a preprocessing stage to better highlight
the ventricle boundaries. End-diastolic MYO segmentations are propagated to
end-systolic (ES) phase using B-Spline FFD registrations [13]. ES meshes gen-
erated with CNN and linear upscaling methods are compared with tracking
results obtained with 10 3D-SAX HR images based on Hausdorff distance. The
proposed SR method produces tracking results (4.73±1.03 mm) more accurate
(p = 0.01) than the linear interpolation (5.50±1.08 mm). We observe that
the images upscaled with the CNN model follow the apical boundaries more
accurately, which is shown in the supplementary material: www.doc.ic.ac.uk/
∼oo2113/M16

www.doc.ic.ac.uk/~oo2113/M16
www.doc.ic.ac.uk/~oo2113/M16
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4 Discussion and Conclusion

The results show that the proposed SR approach outperforms conventional
upscaling methods both in terms of image quality metrics and subsequent image
analysis accuracy. Also, it is computationally efficient and can be applied to
image analysis tasks such as segmentation and tracking. The experiments show
that these applications can benefit from SR images since 2D stack image analy-
sis with SR-CNN can achieve similar quantitative results as the analysis on
isotropic volumes without requiring long acquisition time. We also show that
the proposed model can be easily extended to multiple image input scenarios to
obtain better SR results. SR-CNN’s applicability is not only limited to cardiac
images but to other anatomical structures as well. In the proposed approach,
inter-slice and stack spatial misalignments due to motion are handled using a
registration method. However, we observe that large slice misplacements can
degrade SR accuracy. Future research will focus on that aspect of the problem.
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