
Deep Learning and Its Applications to Signal and Image Processing and Analysis
Exercise 1:

The main aim of the following exercise is to run TensorFlow and creates new layers in a given
code.

1. Download the code from our web-site
https://wwwee.ee.bgu.ac.il/~rrtammy/DNN/DNN.html

 Tensor Flow (by Ohad Shitrit)
 This file contains all the functions shown in the Lab.
 ** The code was taken from TensorFlow homepage, so you can find the original repository
there.

2. Go over the Class mnist (see mnist/mnist.py) and try to understand each member function

3. The main script, which used the mnist class, is fully_connected_feed.py. Read it and try to
run it on your computer (*TensorFlow should be installed)
** In order to run the code, from the “tensorflowPresentation” directory run:
 python mnist/fully_connected_feed.py
It is very important to run it from the main directory. The reason is that a “log” directory
is assumed to be exists in your working directory.

4. Change the “inference” function in mnist.py class to be as follows:
a. Instead of two hidden layers, create 3 convolutional layers with 3x3xN filters. N could be
any number (Possible combination is 16, 32, 64). You can find examples in
mnist/convolutional.py script.
b. After the first two convolutional layers, add max polling layers with kernel size of
[1,2,2,1] and strides of [1,2,2,1], padding=’SAME’.
c. The activation function after the max polling will be ReLU.
d. The last layer is fully-connected with 10 outputs (It is already in the code)
 The network should look like:
 Conv -> ReLU -> Pool -> Conv -> ReLU -> Pool -> Conv -> ReLU - > FC

e. Run the main script again and examine the results.
 Notes:

• the “inference” function includes the variables declaration and the layers.
For example, for Conv layer:

 Weights = tf.Variable…
Bias = tf.Variable…

 conv = tf.nn.conv2d(data,
 conv_weights,
 strides=[1, 1, 1, 1],
 padding='SAME')

 relu = tf.nn.relu(tf.nn.bias_add(conv, biases))
• In order to feed the fully connected layer, you need to serialize your data, see

example in the convlutional.py code (make it 1 dim vector)

5. Run the script again using 3 differents learning rates (by multiples of 10) and watch the
optimization process (The loss is already dumped out to TensorBoard).

6. You need to submit a print screen from TensorBoard of the following:
a. Loss value, for different learning rates
b. The network graph

** Note - You don’t have to get better results than the “regular” network.

Good luck

	

