Generative Adversarial Nets

|an J. Goodfellow,Jean Pouget-Abadie,Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, Yoshua Bengio.

Presented By: Nimrod Shneor, CS Dept. .

Introduction

Develop understanding of theory
Experiments and results
Discussion

Generator
Nets

“Generator networks are essentially just parameterized computational procedure for generating
samples where the architecture provides the family of possible distributions to sample from and the
parameters select a distribution from within that family.” (Y Bengio, Deep Learning)

Naive Example - Generator for the normal

distributions with mean ¢ and covariance X.

We feed samples z from the normal distribution with mean 0 and the Id covariance into a generator net
which on input performs the following:

X=9g(z)=p+Llz

Where L is the Cholesky Decomposition of X. (A decomposition a positive semidefinite matrices
Calculated by ‘Cholskey’s Algorithem’ - a variant of ‘Gaussian Ellimination’.).

Differentaible Generator Nets - Continued..

What about more complicated
distributions you ask”? We simply use
Feedforward Neural Networks of course!

Learning to Generate Chairs, Tables and Cars
with Convolutional Networks

Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim Tatarchenko, Thomas Brox

Abstract—We train generative ‘up-convolutional’ neural networks which are able to generate images of objects given object style,
viewpoint, and color. We train the networks on rendered 3D models of chairs, tables, and cars. Our experiments show that the
networks do not merely learn all images by heart, but rather find a meaningful representation of 3D models allowing them to assess the
similarity of different models, interpolate between given views to generate the missing ones, extrapolate views, and invent new objects
not present in the training set by recombining training instances, or even two different object classes. Moreover, we show that such
generative networks can be used to find correspondences between different objects from the dataset, outperforming existing
approaches on this task.

Index Terms—Convolutional networks, generative models, image generation, up-convolutional networks

+

Generative Adversarial Nets - Training Rule

Hgn max V(D,G) = Egrppu(a)log D(x)] + E,p, () log(1 — D(G(2)))].

D(x) - Probability that input x cam from data
generating distribution.

G(z) - Generated output from input z.

Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used &k = 1, the least expensive option, in our
experiments.
for number of training iterations do
for & steps do

e Sample minibatch of 1 noise samples {z("), ... 2("™)} from noise prior p,(z).
e Sample minibatch of m examples {x(), ... , (™) } from data generating distribution
pdam(a’)'

e Update the discriminator by ascending its stochastic gradient:

Vot 3 fiog D (a) 4106 (1- b (c (+)))]

end for

e Sample minibatch of m noise samples {21, ..., 2("™)} from noise prior p, ().
e Update the generator by descending its stochastic gradient:

Vi, &> tog (1-0(6 ().

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

lllustration

&

L p el o

/|| /| Y/ N/

(a) (b) (c) (d)

L TR

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which =z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping @ = G(z) imposes the non-uniform distribution p, on
transformed samples. GG contracts in regions of high density and expands in regions of low density of pg. (a)
Consider an adversarial pair near convergence: p, is similar to paaa and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D*(x) =

ﬁgjﬁﬁ' (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely

to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because p; = pyaa. The discriminator is unable to differentiate between

the two distributions, i.e. D(z) = 3.

M | |
“Minimax is a decision rule used in decision theory, game theory, statistics and

philosophy for minimizing the possible loss for a worst case (maximum loss)
scenario.” (Wikipedia)

v; = nﬁnmaxvi{ﬂf,a_i)
a_;

https://en.wikipedia.org/wiki/Decision_theory
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Philosophy
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Philosophy

Quick Example

The minimax value of a player

is the smallest value that the
other players can force the

player to receive, without
knowing his actions.

Equivalently, it is the largest
value the player can be sure to
get when he knows the actions of
the other players. (Wikipedia)

X's move
(choose max)

O’s move
(back-up min}

X's move

(back-up max)
00| x 0|0|x~ 0]|0|x 00| x 0|0|x Oﬁf
x[x][0 x[x]0 x|0]/0 x[x]|0 x[0|0 x[X]|O
Ol x|x Xx]0[x -xfx{x-=- 0O]|x|x --xpxix- X[0|x

Back to Generative Adversarial Networks

min max V(D, G) = By,) 108 D()] + Earp sy [loa(1 — D(G(2)))]

The two nets are playing ‘zero-sum game’ where we use the Minimax
strategy to train both nets.

Theorem: Once the above expression reaches its minimum the
Generator’s learned distribution is exactly the data generating
distribution.

Generative Adversarial Networks - Experiments

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c¢) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Discussion

e Pros:
o Great potential for solving real problems.
o Easy to understand and implement

e Cons:
o Lack of theoretical background.

Thanks for listening!

