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Last Class: Filtering

Linear filtering is a weighted sum/difference of
pixel values 111

 Can smooth, sharpen, translate (among many
other uses)

* Filtering in Matlab, e.g. to filter image f with h

O| =

g = filter2( h, f);

/ N\

h=filter  f=image
e.g. h = fspecial('gaussian’);



Partial Derivatives

First order partial derivatives:

OI(x,y)
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Partial Derivatives

First order partial derivatives:

azg;, Y _ [y +1) — I, y)
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Partial Derivatives
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>> myFirstImage = imread('someImage.png’');
>> I = myFirstImage(:,:,1);

>> Ir = I(2:end,:);

>> Il = I(1l:end-1,:);

>> Idx = Il-Ir;

>> figure;imagesc(Idx);colorbar

>> figure;imagesc(abs(Idx));colorbar



Partial Derivatives

Iu = I(:,1:end-1);

Id I(:,2:end);

Idy = Iu-Id;
figure;imagesc(abs(Idy));colorbar




Partial Deriyatives
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>>
>> figure;imagesc(diff(I,1));colorbar
>> figure;imagesc(diff(I,2));colorbar
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Gradients

Gradients:

oI OI
&i’ (‘Py)
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Gradients
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>>
>> figure;imagesc(diff(I,1));colorbar
>> figure;imagesc(diff(I,2));colorbar
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>> G = sqrt(double(Idx).”2+double(Idy)."2);
>> figure;imagesc(G);colorbar
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Gradients
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>> [Igx,Igy] = gradient(double(I));
>> figure;imagesc(abs(Igx));colorbar
>> figure;imagesc(abs(Igy));colorbar
>>




Gradients

§ - >
) >> type gradient
You get long function
.-l but here is the important part:

% Take forward differences on left and right edges
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ifn>1

g(:,1) = (f(:,2) = f(:,1))/(h(2)-h(1));

g(:,n) = (f(:,n) = f(:,n-1))/(h(end)-h(end-1));
end

% Take centered differences on interior points
ifn>2
h = h(3:n) - h(1l:n-2);
g(:,2:n-1) = bsxfun(@rdivide, (f(:,3:n)-f(:,1:n-2)),h);
end
varargout{2} = g;



Derivatives & the Laplacian

- Second order derivatives
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Divergence

Let x,y be a 2D Cartesian coordinates
Let ¢,7 be corresponding basis of unit vectors
The divergence of a continuously differential vector field

F=Ui+Vj

is defined as the (signed) scalar-valued function:

o 0 oU oV
ax’ay)'(U’V)_ or | Oy

divF =V - F = (



Back to Laplacian

The Laplacian of a scalar function or functional expression is

the divergence of the gradient of that function or expression:

Al =V - (VI)

Therefore, you can compute the Laplacian using the divergence

and gradient functions:
>> [Igx,Igy] = gradient(double(I));
>> div = divergence(Igx,Igy);
>> figure;imagesc(div);colorbar
>> figure;imagesc(abs(div));colorbar



Back to Laplacian  ar—v.(vr

>> [Igx,Igy]l = gradient(double(I));
o

>> div = divergence(Igx,Igy);
>> figure;imagesc(div);colorbar

>> figure;imagesc(abs(div));colorbar
abs
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Pyramids

Level 4

Blurand  %1/16 resolution

subsample g Level 3
Multi-scale signal representation  Blurand 1/8 resolution
subsample ' Level 2

1/4 resolution

Blur and
subsample
Level 1
1/2 luti
Blur and resolution
subsample

Level 0
Original
image

A predecessor to scale-space
representation and

multir lution analysis.
uitiresoiutio y Wikipedia



Gaussian Pyramid

The Gaussian Pyramid is a hierarchy of low-pass filtered versions
of the original image, such that successive levels correspond to

lower frequencies.




Gaussian Pyramids

« Algorithm:

— 1. Filter with G(o = 1)

— 2. Resample at every
other pixel

— 3. Repeat




Laplacian Pyramid

The Laplacian Pyramid is a decomposition of the original
image into a hierarchy of images such that each level
corresponds to a different band of image frequencies.
This is done by taking the difference of levels in the

Gaussian pyramid.

For image [ the Laplacian pyramid L(/) is:
Lz’ — Gz — expand(Gq;H)
Lz’ — Gz — blur(Gz)



d Algorithm

Laplacian Pyram

Source: G Hager Slides



Pyramids Construction
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Laplacian Pyramid & Laplacian

The well-known Laplacian derivative operator (isotropic second deriva-

tive) is given by
Vif(z,y) = gg + g;ﬁ

For Gaussian kernels, g(z; 0) = 217m e T /20"
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Isotropic Diffusion

The diffusion equation is a general case of the heat
equation that describes the density changes in a material
undergoing diffusion over time. Isotropic diffusion, in image
processing parlance, is an instance of the heat equation as
a partial differential equation (PDE), given as:

or
ot

I

2
=242 .27
v 8$2+8y2

where, | is the image and t is the time of evolution.

Manasi Datar



Isotropic Diffusion

Solving this for an image is equivalent to convolution with

some Gaussian kernel.

In practice we iterate as follows:

t+1 __ gt t t t t t
L5 = A+ L+ Loy + Ly — 415



Isotropic Diffusion

t=2 t=8 t=128 t=256

We can notice that while the diffusion process blurs the image
considerably as the number of iterations increases, the edge

information progressively degrades as well.



Anisotropic Diffusion: Perona-Malik

Perona & Malik introduce the flux function as a means to

constrain the diffusion process to contiguous

homogeneous regions, but not cross region boundaries.
The heat equation (after appropriate expansion of terms)

s thus modified to: 91 | I
IS thus moditied 1o Ezc(g;,y,t)AI-l—VC'VI

where c is the proposed flux function which controls the

rate of diffusion at any point in the image.



Anisotropic Diffusion: Perona-Malik

A choice of ¢ such that it follows the gradient
magnitude at the point enables us to restrain the
diffusion process as we approach region boundaries.
As we approach edges in the image, the flux function

may trigger inverse diffusion and actually enhance

the edges.



Anisotropic Diffusion: Perona-Malik

Perona & Malik suggest the following two flux functions:

c([|V1]]) = e UIVII/E)
1

2
1+ (15)

c([IVI]]) =



Anisotropic Diffusion: Perona-Malik

The flux functions offer a trade-off between edge-
preservation and blurring (smoothing) homogeneous
regions. Both the functions are governed by the free
parameter Kk which determines the edge-strength to
consider as a valid region boundary. Intuitively, a large
value of Kk will lead back into an isotropic-like solution.

We will experiment with both the flux functions in this

report.



Anisotropic Diffusion: Perona-Malik

A discrete numerical solution can be derived for the

anisotropic case as follows:

I =14+ New - Vvl + s - Vsl 4+ cp - Vil + o - Vil

where {N,S,W,E} correspond to the pixel above, below, left

and right of the pixel under consideration (i,)).



Anisotropic Diffusion: Perona-Malik

Quadratic

Exponential




Isotropic Diffusion
exponent

quadratic

Isotropic

Anisotropic vs.




Bonus Question: Image Enhancement

- Take an image (any image, but preferably one’s that

needs enhancement) and enhance it.
- Use what learned in this class to do so
- Plot the "before™ and “after”
- Plot its derivatives before and after
- Matlab code is needed

- 3 Best works in class get 1 bonus point
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The Eye

Conjunctiva Vitreous humor
. Zonule fibers
Iris
Fovea
Cornea
Visual axis /T‘Macula
_— __._----—-—----X """ lutea
Aqueous Lens Optic axis / Disk
Optic nerve
Retina
Ciliary body Choroid
Sclera

The human eye is a camera

— Iris - colored annulus with radial muscles

— Pu pil - the hole (aperture) whose size is controlled by the iris
— What’s the sensor?
— photoreceptor cells (rods and cones) in the retina

Slide by Steve Seitz
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The Eye

Two types of light-sensitive receptors

Cones
cone-shaped
less sensitive
operate in high light
color vision

Rods
rod-shaped
highly sensitive
operate at night
gray-scale vision

James Hays



Rod & Cone Sensitivity

Intensity of light reflected

from objects (lamberts)

10 -

10—

/\ Dazzling light; bright sun on snow

Outdoors in full sunlight

Outdoors under a tree on a sunny day

Comfortable indoor illumination;
night sports events

Threshold for perception of color;
bright moonlight

/

UL R T Cone vision

Threshold when dark-adapted

© 1998 Sinauer Associates, Inc.




I
Distribution of Rods & Cones

Night Sky: why are there more stars off-center?
Averted vision: http://en.wikipedia.org/wiki/Averted_vision

James Hays




Visible Spectrum
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http://www.chromacademy.com/Ims/sco736/images/Electromagnetic-spectrum.jpg



Visible Spectrum

Relative Sensitivity
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The Physics of Light

Any patch of light can be completely described
physically by its spectrum: the number of photons
(per time unit) at each wavelength 400 - 700 nm.

# Photons

(per ms.)

400 500 600 700
Wavelength (nm.)

© Stephen E. Palmer, 2002




The Physics of Light

Some examples of the spectra of light sources
A. Ruby Laser B. Gallium Phosphide Crystal

# Photons
# Photons

400 500 600 700 400 500 600 700
Wavelength (nm.) Wavelength (nm.)

C. Tungsten Lightbulb D. Normal Daylight

# Photons
# Photons

400 500 600 700 400 500 600 700

© Stephen E. Palmer, 2002




The Physics of Light

Some examples of the reflectance spectra of surfaces
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© Stephen E. Palmer, 2002




Physiology of Color Vision

Three Kinds of cones:

Cone mosaic
440 530 560 nm.
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« Why are M and L cones so close?
 Why are there 37

© Stephen E. Palmer, 2002



Metamers

Input

Frequency Frequency

Result

by Jeff Beall, Adam Doppelt and John F. Hughes
(c) 1995 Brown Unrversity and the NSF Graphics and Visuahzation Center




Color Perception




Color Sensing in Camera (RGB)

* 3-chip vs. 1-chip: quality vs. cost

* Why more green?

Relative Sensilwity
)

0

g ©

. = 5
= Prism E
]ccme> -
UUH 7 :
Lens
OCED(H)l -

= By T
Why 3 colors? o

http://www.cooldictionary.com/words/Bayer-filter.wikipedia
Slide by Steve Seitz




Practical Color Sensing: Bayer Grid

ncomingight o Fstimate RGB
—— Fiter Layer at ‘G’ cells from
P neighboring
values

Resulting Pattern

Slide by Steve Seitz



Camera Color Response

Canon 450D Quantum Efficiency

LDPLLC

/\ s ﬂ www.MaxMax.com
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Relative Quantum Efficiency
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Color Space: How can we represent colors

http://en.wikipedia.org/wiki/File:RGB_illumination._jpg



Color Spaces: RGB

Default Color
Spac

R=1

(G=0,B=0)

G=1

(R=0,B=0)

B=1
Any color =r*R + g*G + b*B (R=0,6=0)

« Strongly correlated channels
» Non-perceptual

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png



-
Color Space: CM 'K

C — Cyan
M — Magenta
K -Black

Subtractive primary colors

In contrast:
RGB
Additive Primary colors
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Color Spaces: HSV

hue, saturation, and value
Intuitive color space

Hue

If you had to choose, would you rather
go without:

- intensity (‘value’), or

- hue + saturation (‘chroma’)?



-0
Color Spaces: HSV

James Hays

Only color: Constant Intensity




Color Spaces: HSV

Constant Color; Only Intensity James Hays
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Color Spaces: HSV

(1] -_r"‘-;“.?”"'t"f ol :J:II f.edu

Original Image James Hays



Color Spaces: HSV

Intuitive color space

(H=1,v=1)

(H=1,8=0)

James Hays



Color Spaces: YCbCr

Fast to compute, good for
compression, used by TV

Y=0 Y=0.5

(Cb=0.5,Cr=0.5)

Cb

(Y=0.5,Cr=0.5)

Cr

(Y=0.5,Cb=05)

James Hays



Color Spaces: L*a*b*

“Perceptually uniform”™ color space

(L=65,b=0)

b

(L=65,a=0)

James Havs



Color Spaces: L*a*b*

“Perceptually uniform”™ color space

L — Lightness

a,b color opponents
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Color
© Original Artist

Reproduction rights obtainable from
www. CartoonStock.com

HAGEND 204

Don't worry Sir, being colour-blind
is not much of a problem around here...

© UW CSE vision faculty



Next class

Frequency




