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Hough transform

Slide from S. Savarese
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Hough transform
Issues:

• Parameter space [m,b] is unbounded.
• Vertical lines have infinite gradient.

Hough space
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Use a polar representation for the parameter space 
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Slide from S. Savarese



Each point votes for a complete family of potential lines:

Each pencil of lines sweeps out a sinusoid in 

Their intersection provides the desired line equation.

Hough Transform



Image features ρ,ϴ model parameter histogram

Hough transform - experiments

Slide from S. Savarese
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Image features

Need to adjust grid size or smooth

Hough transform - experiments

Noisy data

Slide from S. Savarese

ρ,ϴ model parameter histogram



Issue: spurious peaks due to uniform noise

Image features

Hough transform - experiments

Slide from S. Savarese

ρ,ϴ model parameter histogram



Hough Transform Algorithm



1. Image à Canny



2. Canny à Hough votes



3. Hough votes à Edges 
Find peaks and post-process



Hough transform example

http://ostatic.com/files/images/ss_hough.jpg



Incorporating image gradients

• Recall: when we detect an 
edge point, we also know its 
gradient direction

• But this means that the line 
is uniquely determined!

• Modified Hough transform:
for each edge point (x,y)

θ = gradient orientation at (x,y)
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end



Finding lines using Hough transform
• Using m,b parameterization
• Using r, theta parameterization

• Using oriented gradients

• Practical considerations
• Bin size
• Smoothing
• Finding multiple lines
• Finding line segments
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Hough Transform for Detection of Circles

• The parametric equation of the circle can be written 
as

• The equation has three parameters – a, b, r
• The curve obtained in the Hough Transform space for 
each edge point will be a right circular cone

• Point of intersection of the cones gives the 
parameters a, b, r 

222 )()( rbyax =-+-
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Hough Transform for Circles

• Gradient at each edge point is known
• We know the line on which the center will lie

• If the radius is also known then center of the circle 
can be located
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4.3 Detection of circle by Hough Transform -
example

Original Image Circles detected by Canny Edge 
Detector
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4.4 Detection of circle by Hough Transform -
contd

Hough Transform of the edge detected image Detected Circles



Hough Transform

• How would we find circles of unknown radius?



Hough transform for circles 
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Hough transform for circles
• Conceptually equivalent procedure: for each (x,y,r), draw 

the corresponding circle in the image and compute its 
“support”
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Is this more or less efficient than voting with features?
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Recap
• In detecting lines 

• The parameters r and q were found out relative to the origin 
(0,0)

• In detecting circles 
• The radius and center were found out

• In both the cases we have knowledge of the shape
• We aim to find out its location and orientation in the 
image

• The idea can be extended to shapes like ellipses, 
parabolas, etc.
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Parameters for analytic curves

Analytic Form Parameters Equation

Line r, q xcosq+ysinq=r

Circle x0, y0, r (x-xo)2+(y-y0)2=r2

Parabola x0, y0, r, q (y-y0)2=4r(x-xo)

Ellipse x0, y0, a, b, q (x-xo)2/a2+(y-y0)2/b2=1
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Generalized Hough Transform

• The Generalized Hough transform can be used to 
detect arbitrary shapes

• Complete specification of the exact shape of the 
target object is required in the form of the R-Table

• Information that can be extracted are
• Location
• Size
• Orientation
• Number of occurrences of that particular shape
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Creating the R-table
• Algorithm

• Choose a reference point
• Draw a vector from the reference point to an edge point on the 

boundary
• Store the information of the vector against the gradient angle in the 

R-Table
• There may be more than one entry in the R-Table corresponding to 

a gradient value 
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Generalized Hough Transform - Algorithm

• Form an Accumulator array to hold the candidate locations of 
the reference point

• For each point on the edge
• Compute the gradient direction and determine the row of the R-

Table it corresponds to
• For each entry on the row calculate the candidate location of the 

reference point

• Increase the Accumulator value for that point
• The reference point location is given by the highest value in 

the accumulator array
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Generalized Hough Transform – Size and 
Orientation
• The size and orientation of the shape can be found out by 

simply manipulating the R-Table
• For scaling by factor S multiply the R-Table vectors by S
• For rotation by angle q, rotate the vectors in the R-Table 

by angle q
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Generalized Hough Transform – Advantages and 
disadvantages
• Advantages

• A method for object recognition
• Robust to partial deformation in shape
• Tolerant to noise
• Can detect multiple occurrences of a shape in the same pass

• Disadvantages
• Lot of memory and computation is required



Generalized Hough Transform



Generalized Hough Transform



Generalized Hough Transform



Generalized Hough Transform



Hough transform conclusions
Good
• Robust to outliers: each point votes separately
• Fairly efficient (much faster than trying all sets of 

parameters)
• Provides multiple good fits
Bad
• Some sensitivity to noise
• Bin size trades off between noise tolerance, precision, and 

speed/memory
• Can be hard to find sweet spot

• Not suitable for more than a few parameters
• grid size grows exponentially

Common applications
• Line fitting (also circles, ellipses, etc.)
• Object instance recognition (parameters are affine transform)
• Object category recognition  (parameters are position/scale)



Feature detection and matching – Why?

Image stitching
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Image Stitching

[ Brown, Szeliski, Winder CVPR 2005 ]



Feature detection and matching – Why?

3D Reconstruction and Alignment



Feature detection and matching – Why?

Object detection and classification
http://inthefray.org/2015/07/strays-street-people-and-their-dogs/



Feature detection and matching – Why?

Object detection and classification

Find the one false positive



Feature detectors and descriptors

Point-like interest operators (Brown, Szeliski, and Winder 2005)



Feature detectors and descriptors

region-like interest operators (Matas, Chum, Urban et al. 2004)



Feature detectors and descriptors

Edges (Elder and Goldberg 2001)



Feature detectors and descriptors

Straight lines (Sinha, Steedly, Szeliski et al. 2008)



Finding feature points and their 
correspondences

• Two main approaches:
• Find features in one image that can be accurately 

tracked using a local search technique, such as 
correlation or least squares

Nearby viewpoints

• Independently detect features in all the images under 
consideration and then match features based on their
local appearance

Large distance, appearance change



Feature detection and matching
• Feature detection (extraction) 

• Feature description

• Feature matching

• Feature tracking 



Feature detection and matching
• Feature detection (extraction) 

• each image is searched for locations that are likely to 
match well in other images. 

• Feature description

• Feature matching

• Feature tracking 



Feature detection and matching
• Feature detection (extraction) 

• Feature description
• each region around detected keypoint locations is 

converted into a more compact and stable (invariant) 
descriptor that can be matched against other 
descriptors.

• Feature matching

• Feature tracking 



Feature detection and matching
• Feature detection (extraction) 

• Feature description

• Feature matching
• efficiently searches for likely matching candidates in 

other images. 

• Feature tracking 



Feature detection and matching
• Feature detection (extraction) 

• Feature description

• Feature matching

• Feature tracking 
• alternative to the third stage that only searches a small 

neighborhood around each detected feature and is therefore more 
suitable for video processing.



Feature detection and matching
• Feature detection (extraction) 

• each image is searched for locations that are likely to match 
well in other images. 

• Feature description
• each region around detected keypoint locations is converted 

into a more compact and stable (invariant) descriptor that 
can be matched against other descriptors.

• Feature matching
• efficiently searches for likely matching candidates in 

other images. 
• Feature tracking 

• alternative to the third stage that only searches a small 
neighborhood around each detected feature and is 
therefore more suitable for video processing.



What are good key-points  (patches)? 



Comparing two image patches

Weighted Sum Square Differences (WSSD)

I0, I1 two images being compared

u = (u, v) displacement vector

w(xi) Spatially varying weighting function



Comparing an image patch against itself

an auto-correlation function or surface

Measure how stable this metric with respect to small variations in 

positions �u



Auto-correlation surfaces

+



Auto-correlation surfaces

+



Auto-correlation surfaces

+



Auto-correlation surfaces
Using a Taylor Series expansion of the image function 

we can approximate the auto-correlation surface as

where,                                                 is the image gradient at         .  
xi



Auto-correlation surfaces

Calculating the gradient:

Classic Harris detector:  [-2 -1 0 1 2] filter.

Modern variants: convolve the image with horizontal and
vertical derivatives of a Gaussian
(typically with ).� = 1



Auto-correlation surfaces

The auto-correlation matrix can be written asA

As first shown by Anandan (1984; 1989) that the inverse of 

the matrix A provides a lower bound on the uncertainty 

in the location of a matching patch. 

It is therefore a useful indicator of which patches can be 

reliably matched. See examples



Auto-correlation surfaces

Performing an eigenvalue analysis of the auto-correlation 

matrix        produces two eigenvalues                and two 

eigenvector directions:

A

Since the larger uncertainty depends on the smaller 

eigenvalue,  e.g.             it makes sense to find maxima in the 

smaller eigenvalue to locate good features to track (Shi and 

Tomasi 1994).



Harris Feature detector (Harris 88)

Ix Iy

Harr=

Ix2 Iy2 IxIy

g(Ix2) g(Iy2) g(IxIy)



Cornerness – Harris Corner

Fei-Fei Li



Example: Harris Corner



Adaptive non-maximal suppression 
(ANMS, Brown, Szeliski, and Winder 2005)



12/12/17 64

Rotation Invariance (Brown et al)



Scale Invariance

Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown,
Szeliski, and Winder 2005). The boxes show the feature orientation and the
region from which the descriptor vectors are sampled.



Ideas from Brown’s Multi-Scale Oriented Patches 

• 1. Detect an interesting patch with an interest operator. 
Patches are translation invariant.

• 2. Determine its dominant orientation.
• 3. Rotate the patch so that the dominant orientation points 

upward. This makes the patches rotation invariant.
• 4. Do this at multiple scales, converting them all to one 

scale through sampling.
• 5. Convert to illumination “invariant” form

12/12/17 66
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Implementation Concern:
How do you rotate a patch?
• Start with an “empty” patch whose dominant direction is 

“up”.
• For each pixel in your patch, compute the position in the 

detected image patch. It will be in floating point and will 
fall between the image pixels.

• Interpolate the values of the 4 closest pixels in the image, 
to get a value for the pixel in your patch.
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Rotating a Patch

empty canonical patch

patch detected in the image
x’ = x cosθ – y sinθ
y’ = x sinθ + y cosθT

T

counterclockwise rotation

(x,y)
(x’,y’)
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Using Bilinear Interpolation
• Use all 4 adjacent samples

x

y

I00 I10

I01 I11
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SIFT: Motivation
• The Harris operator is not invariant to scale and  
correlation is not invariant to rotation1.

• For better image matching, Lowe’s goal was to 
develop an interest operator that is invariant to scale 
and rotation.

• Also, Lowe aimed to create a descriptor that was 
robust to the variations corresponding to typical 
viewing conditions. The descriptor is the most-used 
part of SIFT.

1But Schmid and Mohr developed a rotation invariant descriptor for it in 1997.
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Idea of SIFT 
• Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, 
scale, and other imaging parameters

SIFT Features
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Claimed Advantages of SIFT  
• Locality: features are local, so robust to occlusion 
and clutter (no prior segmentation)

• Distinctiveness: individual features can be matched 
to a large database of objects

• Quantity: many features can be generated for even 
small objects

• Efficiency: close to real-time performance
• Extensibility: can easily be extended to wide range 
of differing feature types, with each adding 
robustness
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Overall Procedure at a High Level
1. Scale-space extrema detection

2. Keypoint localization

3. Orientation assignment

4. Keypoint description

Search over multiple scales and image locations.

Fit a model to detrmine location and scale.
Select keypoints based on a measure of stability.

Compute best orientation(s) for each keypoint region.

Use local image gradients at selected scale and rotation
to describe each keypoint region.
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1. Scale-space extrema detection
• Goal: Identify locations and scales that can be 
repeatably assigned under different views of the 
same scene or object.

• Method: search for stable features across multiple 
scales using a continuous function of scale.

• Prior work has shown that under a variety of 
assumptions, the best function is a Gaussian 
function. 

• The scale space of an image is a function L(x,y,s)
that is produced from the convolution of a Gaussian 
kernel (at different scales) with the input image.
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Aside: Image Pyramids

Bottom level is the original image.

2nd level is derived from the
original image according to
some function

3rd level is derived from the
2nd level according to the same
funtion

And so on.
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Aside: Mean Pyramid

Bottom level is the original image.

At 2nd level, each pixel is the mean
of 4 pixels in the original image.

At 3rd level, each pixel is the mean
of 4 pixels in the 2nd level.

And so on.

mean
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Aside: Gaussian Pyramid
At each level, image is smoothed and 
reduced in size.

Bottom level is the original image.

At 2nd level, each pixel is the result
of applying a Gaussian mask to
the first level and then subsampling
to reduce the size.

And so on.

Apply Gaussian filter
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Example: Subsampling with Gaussian pre-filtering

G 1/4

G 1/8

Gaussian 1/2
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Lowe’s Scale-space Interest Points
• Laplacian of Gaussian kernel

• Scale normalised (x by scale2)
• Proposed by Lindeberg

• Scale-space detection
• Find local maxima across scale/space
• A good “blob” detector

[ T. Lindeberg IJCV 1998 ]
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Lowe’s Scale-space Interest Points:
Difference of Gaussians

• Gaussian is an ad hoc 
solution of heat diffusion 
equation

• Hence

• k is not necessarily very 
small in practice
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Lowe’s Pyramid Scheme
• Scale space is separated into octaves:

• Octave 1 uses scale s
• Octave 2 uses scale 2s
• etc.

• In each octave, the initial image is repeatedly convolved
with Gaussians to produce a set of  scale space images.

• Adjacent Gaussians are subtracted to produce the DOG

• After each octave, the Gaussian image is down-sampled
by a factor of 2 to produce an image ¼ the size to start
the next level.
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Lowe’s Pyramid Scheme

s+2 filters
ss+1=2(s+1)/ss0

.

.
si=2i/ss0
.
.
s2=22/ss0
s1=21/ss0
s0

s+3
images
including
original

s+2
differ-
ence
images

The parameter s determines the number of images per octave.
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Key point localization

• Detect maxima and 
minima of difference-of-
Gaussian in scale space

• Each point is compared to 
its 8 neighbors in the 
current image and 9 
neighbors each in the 
scales above and below

For each max or min found,
output is the location and
the scale.

s+2 difference images.
top and bottom ignored.
s planes searched.
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Scale-space extrema detection: experimental results over 32 
images that were synthetically transformed and noise added.

• Sampling in scale for efficiency
• How many scales should be used per octave? S=?

• More scales evaluated, more keypoints found
• S < 3, stable keypoints increased too
• S > 3, stable keypoints decreased
• S = 3, maximum stable keypoints found

% detected

% correctly matched

average no. detected

average no. matched

Stability Expense
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2. Keypoint localization 

• Once a keypoint candidate is found, perform a 
detailed fit to nearby data to determine 
• location, scale, and ratio of principal curvatures

• In initial work keypoints were found at location and 
scale of a central sample point.

• In newer work, they fit a 3D quadratic function to 
improve interpolation accuracy.

• The Hessian matrix was used to eliminate edge 
responses.
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Eliminating the Edge Response

• Reject flats:
• < 0.03

• Reject edges:

• r < 10
• What does this look like?

Let a be the eigenvalue with
larger magnitude and b the smaller.

Let r = a/b.
So a = rb

(r+1)2/r  is at a
min when the
2 eigenvalues
are equal.
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Keypoint localization with orientation

832

729
536

233x189
initial keypoints

keypoints after
gradient threshold

keypoints after
ratio threshold



3.Orientation estimation

Create histogram of local gradient directions at selected scale
Assign canonical orientation at peak of smoothed histogram
Each key specifies stable 2D coordinates (x, y, scale,orientation)

If 2 major orientations, use both.



Affine Invariance (not SIFT)

Affine region detectors used to match two images taken from dramatically
different viewpoints (Mikolajczyk and Schmid 2004)
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4. Keypoint Descriptors
• At this point, each keypoint has

• location
• scale
• orientation

• Next is to compute a descriptor for the local image region 
about each keypoint that is
• highly distinctive
• invariant as possible to variations such as changes in viewpoint 

and illumination



SIFT

A schematic representation of Lowe’s (2004) scale invariant feature transform
(SIFT): (a) Gradient orientations and magnitudes are computed at each pixel and 
weighted by a Gaussian fall-off function (blue circle). (b) A weighted gradient 
orientation histogram is then computed in each sub-region, using trilinear 
interpolation. While this figure shows an 8 X8 pixel patch and a 2X2 descriptor array, 
Lowe’s actual implementation uses 16X16 patches and a 4 4 array of eight-bin 
histograms.
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SIFT Keypoint Descriptor
• use the normalized region about the keypoint
• compute gradient magnitude and orientation at each 
point in the region

• weight them by a Gaussian window overlaid on the 
circle

• create an orientation histogram over the 4 X 4 
subregions of the window

• 4 X 4 descriptors over 16 X 16 sample array were 
used in practice. 4 X 4 times 8 directions gives a 
vector of 128 values. ...



SIFT Results
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SIFT Results:  Matching “Objects”



SIFT Results: Recognizing objects in 
clutter scenes



Feature Descriptors (other than SIFT)
• Multiscale Oriented Patches  (MOPs).
• Scale invariant feature transform (MSERs)
• PCA-SIFT
• Gradient location-orientation histogram (GLOH).
• Histograms of Oriented Gradients (HOGs)
• Speeded Up Robust Features (SURF)
• and many others …
• (e.g. BRISK ) 



MOPs Descriptors

MOPS descriptors are formed using an 8 x8 sampling of bias and gain normalized
intensity values, with a sample spacing of five pixels relative to the detection scale.
This low frequency sampling gives the features some robustness to interest point 
location error and is achieved by sampling at a higher pyramid level than the 
detection scale.



Maximally stable extremal regions 
(MSERs)



MSER
Binary regions are computed by thresholding the image at 
all possible gray levels 

This operation can be performed efficiently by
first sorting all pixels by gray value and then incrementally adding 
pixels to each connected component 

As the threshold is changed, the area of each component 
(region) is monitored; regions whose rate of change of
area with respect to the threshold is minimal are defined as 
maximally stable.

Matal et al, 2004



Gradient location-orientation histogram 
(GLOH) descriptor

Mikolajczyk
and Schmid (2005),



Gradient location-orientation histogram 
(GLOH) descriptor

The gradient location-orientation histogram (GLOH) descriptor uses log-polar
bins instead of square bins to compute orientation histograms (Mikolajczyk and Schmid
2005).



GLOH



Histogram of Oriented Gradients 
Descriptors  (Hogs)
• Local object appearance and shape within an image are 

described by the distribution of intensity gradients or edge 
directions. 

• The image is divided into small connected regions called cells, 
and for the pixels within each cell, a histogram of gradient 
directions is compiled. 

• The descriptor is the concatenation of these histograms. 
• For improved accuracy, the local histograms are
• contrast-normalized by calculating a measure of the intensity 

across a larger region of the image, called a block, and then 
using this value to normalize all cells within the block. 

• This normalization results in better invariance to changes in 
illumination and shadowing.



HOGs – Block Normalization



Hogs

(a) average gradient image over training examples
(b) each “pixel” shows max positive SVM weight in the block centered on 

that pixel
(c) same as (b) for negative SVM weights
(d) test image
(e) its R-HOG descriptor
(f) R-HOG descriptor weighted by positive SVM weights
(g) R-HOG descriptor weighted by negative SVM weights

*



HOGs Examples

adapted from Fei-Fei Li



SURF example

adapted from Fei-Fei Li



Example: Pyramid Histogram Of Words
(PHOW)

Bosch et al, ICCV 2007  (variant of dense SIFT descriptor)



Features in Matlab

[FEATURES, VALID_POINTS] = extractFeatures(I, POINTS, Name, Value) 



Example: Harris Corner Detector

corners = detectHarrisFeatures(I);



Example: SURF features

points = detectSURFFeatures(I);

10 Strongest



Example: SURF features

30 Strongest



Example: SURF features

80 Strongest



Example: MSER with upright SURF 
feature descriptor

regions = detectMSERFeatures(I); 



Feature Matching

how can we extract local descriptors that are invariant
to inter-image variations and yet still discriminative enough to establish 
correct correspondences?



Matching strategy and error rates

• Context and application dependent
• matching a pair of images with large overlap
• object detection

• Euclidean distances in feature space can be directly used 
for ranking potential matches.

• Thresholding



Performance quantification of matching 
algorithms

TP: true positives, i.e., number of correct matches;

FN: false negatives, matches that were not correctly 

detected;

FP: false positives, proposed matches that are 

incorrect;

TN: true negatives, non-matches that were correctly 

rejected.



Performance quantification of matching 
algorithms



ROC curve and its related rates



Efficient Matching
• Multi-dimensional search tree 
• Hash table


