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before we move on

- Wavelets ... a few more slides
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Wavelet functions examples

Scaling Function Wavelet
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Haar \Wavelets

c[r%] = %[v[m] +v[m+1]] m=0,24,...., M-1

1
d[M]- ﬁ[v[m] —v[m+1]] m=0,24, ..., M-1

Given a sequence of M items, partition into pairs. Replace each pair by the sum
and difference of the pair of items.
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Haar \Wavelets

c[r%] = L[v[m] +v[m+1]] m=0,24,...., M-1

d[ry]_ —_[V[m]-v[m+1]] m=0,24,....,M-1

LPF c[m] m=0,1,2, ...
HPF < : d[m] m=0,1,2, ...

V[m]
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Haar \Wavelets

Very simple numerical example:

v=[123456789101112 13 14 15 16]

(1+2) 3+4) (5+6) (7+8) (9+10) (11+12) (13+14) (15+16)]=

O
I

3 7 11 15 19 23 27 31i]

Q.
Il

(1-2) 3-4) (5-6) (7-8) (9-10) (11-12) (13-14) (15-16)]=

NS~ LS [

-1 -1 -1 -1 -1 -1 -1 -1]
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Haar \Wavelets

Very simple numerical example:

v=[123456789101112 13 1415 16]

c:%[OBO70110150190230270310]

1
d=—~0-10-10 -10-10-10-10-10-10
7! |



-
Haar \Wavelets

Very simple numerical example:

v=[123456789101112 13 14 15 16]

LPF{c}=%[(0+3)(3+0)(0+7)(7+0) ...... (0+31)(31+0)|=
:%[3 3 7 7 11 11 15 15 19 19 23 23 27 27 31 31
HPF{d}:%[(0+1)(—1—0)(0+1)(—1—0)(0+1) ...... |=

=1 +1 -1 +1 -1 +1 -1 +1 .....
2



Haar \Wavelets

V[m] LPF ) @ c[m] m=0,1,2, ...
: HPF @

dm] m=0,1,2, ..




Haar \Wavelets
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Haar \Wavelets
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Haar Wavelets
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Properties of Daubechies
wavelets

|. Daubechies, Comm. Pure Appl. Math. 41 (1988) 909.
Compact support

1 finite number of filter parameters / fast
Implementations

1 high compressibility
1 fine scale amplitudes are very small in regions where

the function is smooth / sensitive recognition of
structures

|dentical forward / backward filter parameters
1 fast, exact reconstruction
(1 very asymmetric




Mallat® Filter Scheme

Mallat was the first to implement this
scheme, using a well known filter design
called “two channel sub band coder”,
vielding a ‘Fast Wavelet Transform’



Approximations and Details:

Approximations: High-scale, low-
frequency components of the signal

Detalls: low-scale, high-frequency
components

= LPF

Input Signal

— HPF



Decimation

The former process produces twice the
data it began with: N input samples

produce N approximations coefficients and
N detalil coefficients.

To correct this, we Down sample (or:
Decimate) the filter output by two, by simply
throwing away every second coefficient.




Decimation (cont'd)

So, a complete one stage block looks like:

—~LPF— | - A*

Input : ‘
Signa] — HPE 1 D*



Multi-level Decomposition

lterating the decomposition process,
breaks the input signal into many lower-
resolution components: Wavelet
decomposition tree:

CA, cD,




2D Wavelet Decomposition

along rows along columns
- s (2)— mn |LLa [HL, -
I Rl s B Sy
— G [ : }— LH,
- : — H ——@ LL, LH] HH]

H.P.F. H|LPF. 12) DS by 2




2D Wavelet transform

LL, [HL,
HL,

LH, |HH,
LH, HH,

00
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2D Wavelet transform

low-pass
(f1)

| fow-pass 1 B | high-pass | 1 i
(h) (g)
ID DWT along columns
. high-pass 1 | low-pass | 1 a
(g) (f)
image 1D DWT along rows

l \ indicates decimation by two

| high-pass | 1
(8)

1D DWT along columns



Wavelets in Matlab
>> wavedemo

® O ® Wavelet Toolbox...




Wavelets in Matlab

rex

a

Wavelet Toolbox Main Menu - Examples

One-Dimensional

Specialized Tools 1-D

Wavelet 1-D

SWT Dencising 1-D

Wavelet Packet 1-D

Density Estimation 1-D

Continuous Wavelet 1-D

Regression Estimation 1-D

Complex Continuous Wavelet 1-D

Wavelet Coefficients Selection 1-D

Fractional Brownian Generation 1-D

Wavelet 2-D

Specialized Tools 2-D

Wavelet Packet 2-D

SWT Dencising 2-D

Wavelet Coefficients Selection 2-D

Multiple 1-D

Image Fusion

Multisignal Analysis 1-D

Display

Multivariate Denoising

Wavelet Display

Multiscale Princ. Comp. Analysis

Wavelet Packet Display

Wavelet Design

Extension

New Wavelet for CWT

Signal Extension

Image Extension

Close
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Wavelets in Matlab

® O ® Wavelet GU...

Sikde 1 01 13

Stan >>

Preve<

Reset

AutoPlay

Into

Close
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Wavelets in Matlab

@ O ® Wavelet Toolbox... -. 0@ v;avelei GU...

Command line mode Side 5 o1 13
GUI mode Next >>
Short 1D scenario Prevee
Close Reset
AutoPlay
Into
Close
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Wavelets in Matlab

Wavelet 2-D : Indexed Image

File View Insert

Tools

Window

Help

v

<<

Data (Size) woman2 (128x128)
Wavelet sym $ 4 <
Level 2 <
Analyze
Compress
Histograms
Decomposition at level <
View mode : Square ~
1 3
Full Sze > 4
Operations on selected image :
Colormap on <
Nb. Colors l » 255
Brightness - +
Cloge
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Wavelets in Matlab

>> load xbox;

>> figure;

>> imagesc(xbox)

>> title('Original Image')

Original Image
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Wavelets in Matlab

>> [CA,CH,CV,CD] = dwt2(xbox, ‘haar', 'mode’, 'sym');

>> figure;colormap gray;
>> imagesc(CH)
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Wavelets in Matlab

>> [CA,CH,CV,CD] = dwt2(xbox, ‘haar', 'mode’, 'sym');

>> figure;colormap gray;

>> imagesc(CV)

>> title('Vertical - CV');
|

Original Image
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Wavelets in Matlab

>> [CA,CH,CV,CD] = dwt2(xbox, ‘haar', 'mode’, 'sym');

>> figure;colormap gray;
>> imagesc(CD)
>> title('Diagonal - CD');

Original Image




Wavelets in Matlab

>> [CA,CH,CV,CD] = dwt2(xbox, 'haar’, 'mode’

>> figure;colormap gray;

>> imagesc(CA)

>> title('Lowpass CA');
|

Lowpass -CA

Original Image

'
!
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Wavelets in Matlab

>> [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters( ' 'haar')
Lo D =

0 - LOWpaSS 0.7071 0.7071

Hi - Highpass Hi_D =
D - Decomposition -0.7071  0.7071
R - Reconstruction

Lo_R =

0.7071 0.7071

0.7071 -0.7071
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Wavelets in Matlab

>> RGB = imread('someImage.png’);

>> I = rgb2gray(RGB);

>> wname ‘db5"';

>> wname ‘haar’';

>> [CA,CH,CV,CD] = dwt2(I,wname, ‘'mode’, " 'sym');

Alternatively
>> [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('haar')

>> [CA,CH,CV,CD] = dwt2(xbox,Lo_D,Hi D, 'mode’, 'sym');
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Wavelets in Matlab

>> RGB = imread('someImage.png');
>> I = rgb2gray(RGB);

>> wname ‘db5"';

>> wname ‘haar’;

>> [CA,CH,CV,CD] = dwt2(I,wname, ‘mode’, " 'sym');

>> subplot(211)

imagesc(CV); title('Vertical Detail Image');
colormap gray;
subplot(212)

imagesc(CA); title('Lowpass Approximation');
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Wavelets in Matlab

Haar 50 G

100
150 .'
200
250 g
50 100 150 200 250 300 350
Lowpass Approximation

50 100 150 200 250 300 350
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Wavelets in Matlab

>> [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('db2")
Lo_D =

-0.1294 0.2241 0.8365 0.4830

Hi_D =

-0.4830 0.8365 -0.2241 -0.1294

Lo_R =

0.4830 0.8365 0.2241 -0.1294

Hi_ R =

-0.1294  -0.2241 0.8365 -0.4830
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Wavelets in Matlab

>> [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('db5")
Lo_D =

0.0033 -0.0126 -0.0062 0.0776 -0.0322 -0.2423 0.1384 0.7243 0.6038 0.1601

Hi D =

-0.1601 0.6038 -0.7243 0.1384 0.2423 -0.0322 -0.0776 -0.0062 0.0126 0.0033

Lo_R =

0.1601 0.6038 0.7243 0.1384 -0.2423 -0.0322 0.0776 -0.0062 -0.0126 0.0033

Hi_R =

0.0033 0.0126 -0.0062 -0.0776 -0.0322 0.2423 0.1384 -0.7243 0.6038 -0.1601



Wavelets in Matlab
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Wavelets in Matlab

Vertical Detail Image

db5 50 [l
100
150
200

250

50 100 150 200 250 300 350

50 100 150 200 250 300 350
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Wavelets in Matlab

Vertical Detail Image

Haar 50 G

100
150 "
200
250 ot
50 100 150 200 250 300 350
Lowpass Approximation

50 100 150 200 250 300 350



Types of Wavelets

{ ﬂ

Daubechics 4

Daubechics 20
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Wavelets in Matlab

Wavelet Families Wavelets

Daubechies 'dbl’ or 'haar', 'db2', ... ,'db1@"', ..., 'db45’
Coiflets 'coifl', ..., 'coif5'

Symlets 'sym2', ..., 'sym8', ..., 'sym45"’

Fejer-Korovkin filters "fk4', "fke', 'fk8', 'fk1l4"', 'fk22'

Discrete Meyer "dmey '

Biorthogonal 'pbiorl.1', 'biorl.3', 'biorl.5"'

'bior2.2', 'bior2.4', 'bior2.6"', 'bior2.8"'
'bior3.1"', 'bior3.3', 'bior3.5", 'bior3.7'
'bior3.9°', 'bior4.4', 'bior5.5", 'bior6.8"

Reverse Biorthogonal 'rbiol.1', 'rbiol.3', 'rbiol.5"
'rbio2.2', 'rbio2.4", 'rbio2.6', 'rbio2.8"
'rbio3.1', 'rbio3.3', 'rbio3.5", 'rbio3.7"'
'rbio3.9', 'rbiod4.4"', 'rbio5.5", 'rbio6.8"
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Wavelets in Matlab

>> X = idwt2(CA,CH,CV,CD,wname);

>> figure;imagesc(X)
>> colormap gray

100 200 300 400 500 600 700
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Wavelets Pyramid

Decomposition step

columns
rows | Lo D 142 - CA;,
LoD 241k s "
Ly HiD +——=[142 ~hC1_7;'+1 I
orizonta
i columns .
rows ~ Jo D ~14 2 - CD}'{-J
Hi_D 1241 columns ver:‘lﬂcal
J HiD {142~ CDu
diagonal

Where |24 1| Downsample columns: keep the even indexed columns

14 2| Downsample rows: keep the even indexed rows

rows
X | Convolve with filter X the rows of the entry

columns
X | Convolve with filter X the columns of the entry
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A Note about Features

Image intensities can be used to characterize an object



Image intensities can be used to characterize an object



Wavelets Features

http://myths.e2bn.org/library/1359057790/zebra-running-ngorongoro.jpg



Wavelets Features

>> RGB = imread('zebra.jpeg');
>> I = rgb2gray(RGB);
>> figure;imshow(I)

>> [CA,CH,CV,CD] = dwt2(I, 'haar', 'mode’,  'sym');
>> figure;colormap gray;

>> imagesc(CV)

>> figure;colormap gray;

>> imagesc(CH)



Wavelets Features

100

200

ecrtical



Wavelets Features

H O ri ZO n ta I 100 200 300 400 500 600 700 800 900



Edge detection

- Goal: Identify visual changes
(discontinuities) in an image.

- Intuitively, semantic information is
encoded in edges.

- What are some ‘causes’ of
visual edges?

- Canny edges

Source: D. Lowe



This class: edges & lines

- Edge detection to identify
visual change in image

- Derivative of Gaussian
and linear combination
of convolutions

- What is an edge?
What is a good edge?

canny edges




Origin of Edges

N

e ) <
N~

surface normal discontinuity

depth discontinuity

surface color discontinuity

illumination discontinuity

- Edges are caused by a variety of factors

Source: Steve Seitz

Source: Steve Seitz



Why do we care about edges?

- Extract information
- Recognize objects

- Help recover geometry
and viewpoint




Where do humans see boundaries”?




Where do humans see boundaries?

image human segmentation

- Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

gradient magnitude
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Some questions

- What is a good edge detector?

- Do we lose information when we look at edges? Are
edges ‘incomplete’ as a representation of images?



.
Designing an edge detector

- Criteria for a good edge detector:

-~ Good detection: the optimal detector should find all real edges,
ignoring noise or other artifacts

— Good localization

- the edges detected must be as close as
possible to the true edges

- the detector must return one point only for each
true edge point

-Cues of edge detection

— Differences in color, intensity, or texture across the boundary
— Continuity and closure

— High-level knowledge
Source: L. Fei-Fei



Designing an edge detector

- “All real edges”

- We can aim to differentiate later on which edges are ‘useful’ for our
applications.

- If we can’t find all things which could be called an edge, we don’t
have that choice.

- |s this possible?



Closeup of edges

Source: D. Hoiem



Closeup of edges

Source: D. Hoiem




Closeup of edges

Source: D. Hoiem



Closeup of edges




Characterizing edges

- An edge is a place of rapid change in the image intensity

function
intensity function

image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

Hays
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Effects of noise

- Consider a single row or column of the image
- Plotting intensity as a function of position gives a signal

..................................................

i | [ i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

! ! ! ! . I ! '

L ()

1 i 1 1 1 f 1 I 1
0 200 400 600 800 1000 1200 1400 1800 1800 2000

Where is the edge?

Source: S. Seitz



Effects of noise

- Difference filters respond strongly to noise

- Image noise results in pixels that look very different from their
neighbors

- Generally, the larger the noise the stronger the response
- What can we do about it?

Source: D. Forsyth
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Solution: smooth first

b ¢ t st ceeebect ettt s iceesems et sttt s emmame s mme o oty

F@

I i I I I I I I i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

L ()

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Source: S.
Seitz



Derivative theorem of convolution

- Differentiation is convolution, and convolution is
associative: d o4
dx(f g)=/ 8

- This saves us one operation:

Sigma = 50
T

~
Signal

1 I i 1 i 1 i I i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

d S
f*ag E

] 1 I 1 I ] ] 1 ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000 SO urce: S Seltz




Derivative of 2D Gaussian filter
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Defining edges in 2D

- Rapid change in intensity

J(xz)=VI(x) = (%, Z—;)(m) Gradient
Jo(x) = V[Go () * I(x)] = [VG,|(x) * I(z),

gradient of the smoothed image

G, 0G, 1 z2 + 92
VGs(z) = ( oz ' Oy )(x) =[—= —y]?exP (- 20.2y )

horizontal and vertical derivatives of the Gaussian kernel function



Tradeoff between smoothing and localization

1 pixel 3 pixels 7 pixels

- Smoothed derivative removes noise, but blurs edge.
Also finds edges at different “scales”.

Source: D. Forsyth



Scale selection and blur estimation

- How (7 is determined ?
- Elder & Zucker (1998)

- Given a known image noise level, compute, for every
pixel, the minimum scale at which an edge can be reliably

detected



Scale selection and blur estimation




Elder — Are Edges Incomplete? 1999

Y i - »
Azt TRNE N Nt

Figure 2. The problem of local estimation scale. Different structures in a natural image require different spatial scales for local estimation. The
original image contains edges over a broad range of contrasts and blur scales. In the middle are shown the edges detected with a Canny/Deriche
operator tuned to detect structure in the mannequin. On the right is shown the edges detected with a Canny/Deriche operator tuned to detect the

smooth contour of the shadow. Parameters are (o« = 1.25, w = 0.02) and (@ = 0.5, @ = 0.02), respectively. See (Deriche, 1987) for details of
the Deriche detector.

What information would we need to
‘invert’ the edge detection process?



Elder — Are Edges Incomplete? 1999

Edge ‘code’:
position,

gradient magnitude,
gradient direction,
blur.

Figure 8. Top lefi: Original image. Top right: Detected edge locations. Middle lefi: Intermediate solution to the heat equation. Middle
right: Reconstructed luminance function. Bottom left: Reblurred result. Bottom right: Error map (reblurred result—original). Bright indicates
overestimation of intensity, dark indicates underestimation. Edge density is 1.7%. RMS error is 10.1 grey levels, with a 3.9 grey level DC
component, and an estimated 1.6 grey levels due to noise removal.



Implementation issues

- The gradient magnitude is large along a thick “trail” or
‘ridge,” so how do we identify the actual edge points?

- How do we link the edge points to form curves?

Source: D. Forsyth
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Edge thining

- We wish to get single pixels at discrete locations along the
edge contours.

- Can be done by looking for maxima in the edge strength
(gradient magnitude) in a direction perpendicular to the
edge orientation, i.e., along the gradient direction.

- Finding this maximum corresponds to taking a directional
derivative of the strength field in the direction of the
gradient and then looking for zero crossings.

So(@) =V - T4(x) = [V?G,](z) * I()).

Laplacian



Laplacian of Gaussian (LoG) kernel (Marr
and Hildreth 1980).

1 r? + y? z? + 32
2 T — p—— —_—
Vgl o3 (2 202 )exp( 202 )

This kernel can be split into two separable parts:

V2Gy(e) = 2z (1- "’—2) Go@)Golw) + 25 (1- 2%) Go(y)Go(a)

LoG - Difference of Gaussian (DoG) computation



Combining edge feature cues

Brightness

R e
Y 5.
~ A
’

Combined brightness, color, texture boundary detector (Martin, Fowlkes, and
Malik 2004)



Brightness

Color
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Figure from Fowlkes



Results

Automatic

Human



Results

Automatic

Human



Results




Results

For more:
http://www.eecs.berkeley.edu/Research/Projects
/CS/vision/bsds/bench/html/108082-color.html




Scoring Edge Detectors

108082 F=0.50
1 T T T T T T T T T

0.9

0.8

0.7

06|

0.5

Precision

D4f

0.3

0.z

01f

]

Ren et al. 0 01 0z 03 04 05 06 07 oia ois 1
Recall
NIPS2012 Precision is the probability that a machine-generated
(color) boundary pixel is a true boundary pixel. Recall is the
(0.50) probability that a true boundary pixel is detected.
The traditional F-measure or balanced F-score (F4 score) is the harmonic mean of precision and recall:
1 recision - recall
F,=2. — o PP .
1 . precision + recall

recall precision



Edge Linking

(a)

Chain code Arc length parameterization



45 years of boundary detection

Precision
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® [F=0.79] Human
= = = [F=070]gPb
= = = [F =0.68] Multiscale — Ren (2008)
= = = [F =0.66] BEL - Dollar, Tu, Belongie (2006)

= = = [F = 0.66] Mairal, Leordeanu, Bach, Herbert, Ponce (2008) | :-.......™
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= = = [F =(.64] Untangling Cycles — Zhu, Song, Shi (2007)

= = = [F =0.64] CRF - Ren, Fowlkes, Malik (2005)

= = = [F =0.58] Canny (1986)

= = = [F =0.56] Perona, Malik (1990)
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- and Malik. TPAMI 2011 (pdf)



State of edge detection

- Local edge detection works well

— ‘False positives’ from illumination and texture edges (depends on
our application).

- Some methods take into account longer contours
- Modern methods that actually “learn” from data.
- Poor use of object and high-level information.

Hays



Canny edge detector

- Probably the most widely used edge detector in
computer vision.

- Theoretical model: step-edges corrupted by additive
Gaussian noise.

- Canny showed that first derivative of Gaussian closely
approximates the operator that optimizes the product
of signal-to-noise ratio and localization.

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

22.000 citations!

L. Fei-Fei



.
Examples: Controversy and Appropriateness

Lena ‘Fabio’

Alexander Sawchuk @ USC, 1973 Deanna Needell @ Claremont McKenna, 2012



Canny edge detector

1. Filter image with x, y derivatives of Gaussian

Source: D. Lowe, L. Fei-Fei



Derivative of Gaussian filter
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x-direction y-direction
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Compute Gradients

X-Derivative of Gaud¥Rgt's the v_perivative of Gaussian
difference?




Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

Source: D. Lowe, L. Fei-Fei



- 00000
Compute Gradient Magnitude




Compute Gradient Orientation

Threshold magnitude at minimum level
Get orientation via theta = atan2(gy, gx)




Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
- Thin multi-pixel wide “ridges” to single pixel width

Source: D. Lowe, L. Fei-Fei



Sidebar: Bilinear Interpolation

column —»
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http://en.wikipedia.org/wiki/Bilinear interpolation
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Sidebar: Interpolation options

imx2 = imresize(im, 2, interpolation_type)

‘nearest’
— Copy value from nearest known
— Very fast but creates blocky edges

‘bilinear’
— Weighted average from four nearest known pixels
— Fast and reasonable results

‘bicubic’ (default)

— Non-linear smoothing over larger area (4x4)

— Slower, visually appealing, may create negative
pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation




Non-maximum suppression

Non-maximum supression is often used along with edge detection

algorithms.
The image is scanned along the image gradient direction, and if pixels are

not part of the local maxima they are set to zero.
This has the effect of supressing all image information that is not part of

local maxima.

Source: D. Forsyth



Non-maximum suppression for each
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Source: D. Forsyth

At pixel q:

We have a maximum if the
value is larger than those at
both p and at .

Interpolate along gradient
direction to get these values.




Before Non-max Suppression

Gradient magnitude

James Hays



After non-max suppression

radient magnituae
James Hays



Canny edge detector

. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

Thin multi-pixel wide “ridges” to single pixel width
4. ‘'Hysteresis’ Thresholding:

Define two thresholds: low and high

Use the high threshold to start edge curves and the
low threshold to continue them

‘Follow’ edges starting from strong edge pixels
Connected components (Szeliski 3.3.4)

Source: D. Lowe, L. Fei-Fei



T
‘Hysteresis’ thresholding

- Two thresholds — high and low

- Grad. mag. > high threshold? = strong edge
- Grad. mag. < low threshold”? noise

- In between = weak edge

- ‘Follow’ edges starting from strong edge pixels

- Continue them into weak edges
Connected components (Szeliski 3.3.4)

Source: S. Seitz



Hysteresis thresholding

Threshold at low/high levels to get weak/strong edge
pixels

‘Follow’ edges starting from strong edge pixels
Connected components
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Final Canny Edges




Effect of o (Gaussian kernel spread/size)

2

Canny with (J

Canny with ¢ = |

Original

The choice of ¢ depends on desired behavior

* large o detects large scale edges
« small ¢ detects fine features

Source: S. Seitz



Canny edge detector
1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

Thin multi-pixel wide “ridges” to single pixel width
4. "Hysteresis’ Thresholding:

Define two thresholds: low and high

Use the high threshold to start edge curves and
the low threshold to continue them

‘Follow’ edges starting from strong edge pixels
Connected components (Szeliski 3.3.4)

- MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei



e
edge() in Matlab

- BW = edge(l,method,threshold,direction,'nothinning')
- BW = edge(l,method,threshold,direction,sigma)

Method

"Canny'

‘log’ (Laplacian of Gaussian)
'Prewitt'

'Roberts'

'Sobel’

'zerocross'



Prewitt

edge() in Matlab




Next Class: Hough transform




