

2

2D Fourier Transform

Definition

$$\begin{split} F(u,v) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} \, dx \, dy, \\ f(x,y) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} \, du \, dv \end{split}$$

where u and v are spatial frequencies.

Also will write FT pairs as $f(x, y) \Leftrightarrow F(u, v)$.

A. Zisserman

2D Fourier Transform • F(u, v) is complex in general, $F(u, v) = F_R(u, v) + jF_I(u, v)$ • |F(u, v)| is the magnitude spectrum • $\operatorname{arctan}(F_I(u, v)/F_R(u, v))$ is the phase angle spectrum. • Conjugacy: $f^*(x, y) \Leftrightarrow F(-u, -v)$ • Symmetry: f(x, y) is even if f(x, y) = f(-x, -y)A. Zisserman

Sinusoidal Waves

In 1D the Fourier transform is based on a decomposition into functions $e^{j2\pi ux} = \cos 2\pi ux + j \sin 2\pi ux$ which form an orthogonal basis. Similarly in 2D

 $e^{j2\pi(ux+vy)} = \cos 2\pi(ux+vy) + j\sin 2\pi(ux+vy)$

The real and imaginary terms are sinusoids on the x, y plane. The maxima and minima of $\cos 2\pi (ux + vy)$ occur when

 $2\pi(ux+vy)=n\pi$

Sinusoidal Waves

write ux + vy using vector notation with $\mathbf{u} = (u, v)^{\top}, \mathbf{x} = (x, y)^{\top}$ then

$$2\pi(ux + vy) = 2\pi \mathbf{u}.\mathbf{x} = n\pi$$

are sets of equally spaced parallel lines with normal **u** and wavelength $1/\sqrt{u^2 + v^2}$.

A. Zisserman

Sinusoidal Waves

To get some sense of what basis elements look like, we plot a basis element --- or rather, its real part --as a function of x,y for some fixed u, v. We get a function that is constant when (ux+vy) is constant. The magnitude of the vector (u, v) gives a frequency, and its direction gives an orientation. The function is a sinusoid with this frequency along the direction, and constant perpendicular to the direction.

2D Fourier Decomposition

The spatial function f(x, y)

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(ux+vy)} du dv$$

is decomposed into a weighted sum of 2D orthogonal basis functions in a similar manner to decomposing a vector onto a basis using scalar products.

2D Fourier Transform of Real Images

What does it mean to be at pixel x,y? What does it mean to be more or less bright in the Fourier decomposition image?

Filtering Vs. Convolution in 2D

convolution

g(x,y) = h(x,y) * f(x,y) = f(x,y) * h(x,y) $= \int \int f(u,v)h(x-u,y-v) \, du \, dv$

filtering

$$g(x,y) = \begin{array}{rrrr} h_{11} f(i-1,j-1) &+ h_{12} f(i-1,j) &+ h_{13} f(i-1,j+1) + \\ h_{21} f(i,j-1) &+ h_{22} f(i,j) &+ h_{23} f(i,j+1) &+ \\ h_{31} f(i+1,j-1) &+ h_{32} f(i+1,j) &+ h_{33} f(i+1,j+1) \end{array}$$

for convolution, reflect filter in x and y axes

Filtering: Spatial Domain vs. Frequency Domain

There are two equivalent ways of carrying out linear spatial filtering operations:

- 1. Spatial domain: convolution with a spatial operator
- 2. Frequency domain: multiply FT of signal and filter, and compute inverse FT of product

Why choose one over the other ?

- · The filter may be simpler to specify or compute in one of the domains
- Computational cost

Class Work Read cameraman image: *I = imread('cameraman.tif');*Calculate its frequency spectrum with fft2 Display the absolute value of its spectrum with and w/o fftshift It is recommended to present the spectral image using logarithmic scale.

1D Sampling

In 1D model the image as a set of point samples obtained my multiplying f(x) by the comb function

$$comb(x) = \sum_{n=-\infty}^{\infty} \delta(x - nX)$$

an infinite set of delta functions spaced by X.

2D Sampling

In 2D the equivalent of a comb is a bed-of-nails function

$$\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}\delta(x-nX)\delta(y-mY)$$

Fourier transform pairs

$$\sum_{n=-\infty}^{\infty} \delta(x - nX) \leftrightarrow \frac{1}{X} \sum_{n=-\infty}^{\infty} \delta(u - n/X)$$
$$\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta(x - nX) \delta(y - mY) \leftrightarrow \frac{1}{XY} \sum_{n=-\infty}^{\infty} \delta(u - n/X) \sum_{m=-\infty}^{\infty} \delta(v - n/Y)$$

Sampling Theorem in 2D

If the Fourier transform of a function f(x,y) is zero for all frequencies beyond u_b and v_b , i.e. if the Fourier transform is *band-limited*, then the continuous function f(x,y) can be completely reconstructed from its samples as long as the sampling distances w and h along the x and y directions are such that $w \leq \frac{1}{2u_b}$ and $h \leq \frac{1}{2v_b}$

