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Cluster The United States of America




Cluster The United States of America

Major Physiographic Divisions of
the Conterminous United States

Atlantic Plain
Interior Highlands
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Cluster The United States of America
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Cluster The United States of America

The Unlted States redrawn as an% States with Equal Populatlon
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Clustering

Group together similar ‘points’ and represent them with a
single token.

Key Challenges:
1) Which features to select for meaningful clustering?

2) What makes two points/images/patches similar? -
define a metric

3) How do we compute an overall grouping from pairwise
similarities?

4) Hard or Soft Clustering?

Adapted from Derek Hoiem



Why do we cluster?

- Summarizing data
— Look at large amounts of data
— Patch-based compression or denoising
— Represent a large continuous vector with the cluster number

- Counting
— Histograms of texture, color, SIFT vectors

- Segmentation
— Separate the image into different regions

- Prediction
— Images in the same cluster may have the same labels

Derek Hoiem



How do we cluster?

- K-means
— Iteratively re-assign points to the nearest cluster center

- Agglomerative clustering

— Start with each point as its own cluster and iteratively merge the
closest clusters

- Mean-shift clustering
— Estimate modes of probability density function (pdf)

- Spectral clustering

— Split the nodes in a graph based on assigned links with similarity
weights



K-means algorithm

1. Randomly E E
select K centers E ¢

2. Assign each
point to nearest
center

3. Compute new d
center (mean) k f
e

for each cluster

[llustration: http://en.wikipedia.org/wiki/K-means clustering




K-means algorithm

1. Randomly
select K centers

2. Assign each
point to nearest
center

Back to 2

3.Compute new ¢

center (mean) k f

for each cluster &
N\

[llustration: http://en.wikipedia.org/wiki/K-means clustering




.
K-means: design choices

- Initialization
- Randomly select K points as initial cluster center
- Or greedily choose K points to minimize residual

- Distance measures
- Traditionally Euclidean, could be others

- Optimization
- Will converge to a local minimum
- May want to perform multiple restarts



K-means

1. Initialize cluster centers: €V ; t=0

2. Assign each point to the closest center
N K )
t . t—1
5 =argminy D375 ¢/ -, )
J 1
3. Update cluster centers as the mean of the points

N K
¢ =argmin} > Y5 (e, - x,
C ] i

4. Repeat 2-3 until no points are re-assigned (t=t+1)

Slide: Derek Hoiem



K-means Clustering Example
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-
K-Means pros and cons

- Pros

- Finds cluster centers that minimize
conditional variance (good
representation of data)

- Simple and fast*
- Easy to implement

- Cons o outher
o O
- Need to choose K 9 /
. . 0 Q
- Sensitive to outliers o
- Prone to local minima

- All clusters have the same
parameters (e.g., distance measure is
non-adaptive)

- *Can be slow: each iteration is
O(KNd) for N d-dimensional points

- Usage
- Rarely used for pixel segmentation

outher
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Agglomerative clustering

1. Say "Every point is its

. e . own cluster”
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Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 40



Agglomerative clustering

1. Say "Every point is its

®
o own cluster”
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o 2. Find“most similar” pair
¢ e of clusters
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Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 41
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Agglomerative clustering

. 1. Say “Every pointis its
° o own cluster”
.0 . .@ wn cluster
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Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 42



Agalomerative clustering

Copyright © 2001, 2004, Andrew W. Moore

1. Say “Every point is its
own cluster”

2. Find "most similar” pair

of clusters

3. Merge it into a parent
cluster

4. Repeat

~R

K-means and Hierarchical Clustering: Slide 43



e
Agglomerative clustering

1. Say "Every point is its

.® e @ own cluster”
P
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Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 44



Hierarchical Clustering Example

Hierarchical Clustering Dendrogram
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Agglomerative clustering A

How to define cluster similarity?

- Average distance between points, maximum
distance, minimum distance

- Distance between means or medoids
- (medoids like means but restricted to be in the dataset)

How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or |
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Conclusions: Agglomerative Clustering

Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

Bad

- May have imbalanced clusters
- Still have to choose number of clusters or threshold
- Need to use an “ultrametric” to get a meaningful hierarchy



Let's return to K-means...
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Expectation-Maximization Algorithm

K-Means — the Soft Version

K-means algorithm is a hard clustering algorithm: every point is
assigned to a single cluster.

It is an iterative algorithm with two step: assign and update.

In soft clustering algorithm all data points are assigned to all
cluster with a certain degree (or weight ).

The EM algorithm is a soft clustering algorithm (analogous to K-
means) where E stands for Expectation and M for

- . . (Dempster, Laird, and
Maximization. Rubin 1977)



Expectation-Maximization Algorithm
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Some Background before we go deeper

Probability

Inference
(Likelihood)

A model of the data generating process gives rise to data.
Model estimation from data is most commonly done through Likelihood estimation

Sydney.edu.au/engineering/it/~compb318/lectures/EMAIgorithm.ppt



Likelihood Function

P(Data | Model) P(Model)

P(Model | Data) = P(Data)
ata

Likelihood Function

Find the “best” model which has generated the data. In a likelihood function
the data is considered fixed and one searches for the best model over the
different choices available.

Sydney.edu.au/engineering/it/~compb318/lectures/EMAIgorithm.ppt



-
Model Space

- The choice of the model space is plentiful but not
unlimited.

- There is a bit of “art” in selecting the appropriate model
space.

- Typically the model space is assumed to be a linear
combination of known probability distribution functions.

Sydney.edu.au/engineering/it/~compb318/lectures/EMAIgorithm.ppt



Examples

- Suppose we have the following data
- 0,1,1,0,0,1,1,0

- In this case it is sensible to choose the Bernoulli
distribution (B(p)) as the model space.

P(X =z)=p*(1 —p)l™@

- Now we want to choose the best p, i.e.,

argmax, P(Data|B(p))

Sydney.edu.au/engineering/it/~compb318/lectures/EMAIgorithm.ppt



Examples

Suppose the following are marks in a course
55.5, 67, 87, 48, 63

Marks typically follow a Normal distribution whose density

function is
1

N(p,0) = A e 3@

210

Now, we want to find the best u,c such that

argmaxy, op(Data|p, o)

Sydney.edu.au/engineering/it/~compb318/lectures/EMAIgorithm.ppt



Examples

- Suppose we have data about heights of people (in cm)
- 185,140,134,150,170

- Heights follow a normal (log normal) distribution but men
on average are taller than women. This suggests a
mixture of two distributions

1 N(u1,01) + 7N (up, 02)

Sydney.edu.au/engineering/it/~compb318/lectures/EMAIgorithm.ppt



e
Maximum Likelihood Estimation (MLE)

- We have reduced the problem of selecting the best

model to that of selecting the best parameter.

- We want to select a parameter p which will maximize
the probability that the data was generated from the

model with the parameter p plugged-in.

- The parameter p is called the maximum likelihood

estimator.

Sydney.edu.au/engineering/it/~compb318/lectures/EMAIgorithm.ppt



I
MLE for Mixture Distributions

- When we proceed to calculate the MLE for a mixture, the
presence of the sum of the distributions prevents a “neat”

factorization using the log function.

- A completely new rethink is required to estimate the

parameter.

- The new rethink also provides a solution to the clustering

problem.

Sydney.edu.au/engineering/it/~compb318/lectures/EMAIgorithm.ppt



Expectation-Maximization Algorithm

An expectation—maximization (EM) algorithm is an iterative method to find
maximum likelihood or maximum a posteriori (MAP) estimates of parameters

in statistical models, where the model depends on unobserved latent variables.
The EM iteration alternates between

1. Expectation (E) step: expectation of the log-likelihood evaluated

using the current estimate for the parameters

2. Maximization (M) step: which computes parameters maximizing the expected
log-likelihood found on the E step.

These parameter-estimates are then used to determine the distribution of the

latent variables in the next E step.

Wikipedia: EM
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EM Algorithm for Mixture of Normals

Mixture of

S / Normals
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Sydney.edu.au/engineering/it/~compb318/lectures/EMAIgorithm.ppt



EM and K-means

- Notice the similarity between EM for Normal mixtures and
K-means.

- The expectation step is the assignment.
- The maximization step is the update of centers.



Clustering for Image Processing:

Image Segmentation

Goal: Break up the image into meaningful or perceptually
similar regions




Oversegmentation Undersegmentation

Hierarchical Segmentations




Major processes for segmentation

- Bottom-up: group tokens with similar features

- Top-down: group tokens that likely belong to the same
object

Bottom-up Top-down

(b)

[Levin and Weiss 2000]




K-means clustering using intensity or color

Image Clusters on intensity Clusters on color




Segmentation by K-Means Clustering

Matlab Command:
idx = kmeans(X,k)
Input: X — n-by-p observation matrix
for Images: nis the number of pixels,
p is the number of features:
RGB — channels; or RGB+ image coordinates (x,y)
Output: vector idx containing cluster indices

Features Space

37 47
51 41 50
49 44 51
46 45 53
41 45 54

38 47 56




Segmentation by K-Means Clustering
X

49 37 47
LAl 50 What is K?
49 44 51
46 45 53
41 45 54
38 47 56

. 3747 ...




GMM- EM-based Segmentat)i(on

P(X ~ wl) P(X - wg) P(X - WS) Label Map
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Brain Tumor Segmentation

WM soft seg. GM soft seg. CSF soft seg. Tumor soft seg.

Tammy Riklin Raviv, Multinomial Level-Set Framework for
Multi-Region Image Segmentation, SSVM 2017



Mean shift algorithm

Try to find modes of a non-parametric density.

L*U*V* color space

Original Image

Find smooth continuous non-parametric model of the intensity
distribution

Efficiently search for peaks in this high-dimensional data
distribution without ever computing the complete function explicitly

(Fukunaga and Hostetler 1975; Cheng 1995; Comaniciu and Meer 2002).



-
Mean shift algorithm

Try to find modes of a non-parametric density.
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-
Mean Shift Algorithm

How to estimate the density function given a sparse set of

samples? .
smooth the data, e.g., by convolving it
with a fixed kernel of width h:

f(@) = Z:K(:c —a;) = Zk (ll-’v ;fill’*’)

L*U* color space

where x; are the input samples and k(r) is the kernel function (or Parzen window).

Once we have computed f(x), as we can find its local maxima using gradient

ascent or some other optimization technique.



-
Attraction basin

- Attraction basin: the region for which all trajectories
lead to the same mode

- Cluster: all data points in the attraction basin of a
mode

Slide by Y. Ukrainitz & B. Sarel



Attraction basin
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Mean-shift algorithm

- Mean shift is a procedure for locating the maxima—the
modes—of a density function given discrete data sampled
from that function.

- Let a kernel function K (x — x;) be given.
- Typical kernels :

w12
- Gaussian: K(x—xz-)zk(HX hZXZH )

- Flat kernel:

. el <
K(X—Xi):{ 1 if |x—x|] < A

0 if HX_XiH > )\



Mean-shift algorithm

- Mean shift is a procedure for locating the maxima—the
modes—of a density function given discrete data sampled
from that function.

- Let a kernel function K (x — x;) be given.
- The weighted mean of the density in the window
determined by K is D ieNGo) K(xi —x)x;
m(x) = <<
inEN(x) K(XZ o X)
. N(X) IS the neighborhood of x . A set of points of




-
Computing the Mean Shift

Simple Mean Shift procedure:
« Compute mean shift vector

*Translate the Kernel window by m(x)

m(x) =

Slide by Y. Ukrainitz & B. Sarel



Mean shift clustering

The mean shift algorithm seeks modes of the given set
of points

Choose kernel and bandwidth
2. For each point:
a) Center a window on that point

b) Compute the mean of the data in the search
window

c) Center the search window at the new mean
location

d) Repeat (b,c) until convergence

3. Assign points that lead to nearby modes to the
same cluster

—



-
Segmentation by Mean Shift

- Compute features for each pixel (color, gradients, texture, etc.).

- Set kernel size for features K; and position K..
- Initialize windows at individual pixel locations.
- Perform mean shift for each window until convergence.

- Merge windows that are within width of K; and K..

K(z;) =k (""’;1"2”2) N (Ilr';:gIIQ)




Mean Shift Algorithm

(Comaniciu and Meer 2002) (©) 2002 IEEE.|



e
Mean shift segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

- Versatile technique for clustering-based segmentation

Segmented "landscape 1" Segmented "landscape 2"




Mean shn‘t segmentatlon results

Comaniciu and Meer 2002



Mean shift segmentation results

omaniciu an eer 2002



-
Mean shift pros and cons

- Pros
- Good general-practice segmentation
- Flexible in number and shape of regions
- Robust to outliers

- Cons

- Have to choose kernel size in advance

- Not suitable for high-dimensional features
- When to use it

- Oversegmentation
- Multiple segmentations
- Tracking, clustering, filtering applications



Spectral clustering

Group points based on graph structure & edge costs.
Captures “neighborhood-ness” or local smoothness.

Image:
Hassan et al.




Spectral clustering

Main idea: Group points based on links in a graph
Construct a symmetric matrix W

Wi j  is the affinity between points i and j.




Cuts in a graph

A B sum
A | assoc(A,A) | cut(A,B) | assoc(A,V)
B | cut(B,A) | assoc(B,B) | assoc(B,V)
sum | assoc(A,V) | assoc(B)V)

assoc(A, A) = Z Wi, j
i€A,JEA assoc(A, V) = assoc(A, A) + cut(A, B)

assoc(B, B) = | Z Wi,j sum of all weights associated with A



I
Normalized Cut (Shi and Malik)

I}ll,iél cut(4, B) = | Z Wi i

imbalance clustering

Normalized cut

cut(A, B) N cut(A, B)
assoc(A,V) = assoc(B,V)

Ncut(A, B) =



Normalized Cut (Shi & Malik)

.. cut(4, B) N cut(A4, B)
assoc(A,V) = assoc(B,V)

10 20 30

W = [w; 4]

Unfortunately, computing the optimal normalized cut is NP-complete.



e
Normalized Cut (Shi & Malik)

Let x be the indicator vector where z; = +1iffi € Aand z; = —1iffi € B.

Letd = W1 be the row sums of the symmetric matrix ; W and D = diag(d)

Shi and Malik show that minimizing the normalized cut over all possible

indicator vectors x is equivalent to minimizing

Rayleigh quotient min yT(D - W)y

Y yT Dy

where, y = ((1+xz)—-b(1—=x))/2 suchthat y-d=0

a vector of all ones and b’s



e
Normalized Cut (Shi & Malik)

Y yT Dy

Minimizing this Rayleigh quotient is equivalent to solving the generalized

eigenvalue system
(D~ W)y = ADy,

which can be turned into a regular eigenvalue problem
(I —N)z = Az,

where N — D 12w p-1Y2 and 2z = Dl/zy.
Normalized Affinity Matrix (Weiss 1999)



e
Normalized Cut (Shi & Malik)

Pixel-wise affinities:

F; —F;||? |z —x;|?
g moxp ((ESEL 2l
S

[ is a feature vector that consists of intensities, colors, or oriented filter histograms.



Normalized cuts for segmentation




Which algorithm to use”

- Quantization/Summarization: K-means
- Aims to preserve variance of original data
- Can easily assign new point to a cluster

for:;n i colosseum trevifountai sanpietro

-ﬁi f M:ﬂ

pantheon

pantheon piazzanavona spanishsteps

palazzosenatorio spanishsteps michelangelo

Summary of 20,000 photos of Rome using
“greedy k-means”
http://grail.cs.washington.edu/projects/canonview/

Quantization for
computing histograms




Which algorithm to use”

- Image segmentation: agglomerative clustering

- More flexible with distance measures (e.g., can be based on
boundary prediction)

- Adapts better to specific data
- Hierarchy can be useful

http://www.cs.berkeley.edu/~arbelaez/UCM.html




-
Segmentation in MATLAB

- https://www.mathworks.com/discovery/image-
segmentation.ntml

» Thresholding methods such as Otsu’s method




-
Segmentation in MATLAB

- https://www.mathworks.com/discovery/image-
segmentation.html

* Color-based Segmentation such as K-means clustering




Segmentation in MATLAB

https://www.mathworks.com/discovery/image-
segmentation.ntml

« Texture methods such as texture filters
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Segmentation in MATLAB

- https://www.mathworks.com/discovery/image-
segmentation.html

« Transform methods such as watershed segmentation




Quantitative Evaluation

Sa NSy

IOU(SA,SM) — SAUSM




Prior based segmentation

supervised/unsupervised
top-down — bottom-up
segmentation

Riklin Raviv et al, ECCV 2004, ICCV 2005, IJCV 2007



.
Prior based segmentation

Co-segmentation/Mutual Segmentation

Riklin-Raviv et al CVPR workshop (POCV) 2006, IJCV 2008



Prior based segmentation

Symmetry based
segmentation

Riklin Raviv et al, CVPR 2006, IEEE TPAMI 2009



