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A generalized approach leads to spatial filters that accept changes of scale by a factor of 4. The procedure

employs phase filters with reduced tolerance requirements and achieves high discrimination capability and

efficient light throughput. Computer simulations and laboratory experiments show the advantages of this

novel approach.

1. Introduction

Conventional methods of optical pattern recogni-
tion suffer from the requirement of high-resolution
recording materials and distortion sensitivity. In
some recent publicationsl-3 a new general procedure
was introduced that may be employed for generating
spatial filters with reduced resolution requirements.
Partial and complete rotation invariance was demon-
strated in computer simulations and laboratory ex-
periments employing bipolar amplitude filters, phase-
only filters, and composite phase filters.

The treatment of scale changes is more involved
than rotation since rotation is a periodic function while
scale may in principle change infinitely. Therefore,
while complete rotation invariance is possible scale
changes must be limited within certain ranges.

Previous attempts for scale invariant pattern recog-
nition involved pretransformations,4 wavelength scan-
ning,5 and filter multiplexing. 6 -9 In this work we in-
troduce a logarithmic radial harmonic (LRH)
transformation to implement scale invariant filtering.
The initial goal of our research project,' the applica-
tion of reduced information content filters, is pre-
served together with object shift invariance and a high
degree of scale invariance compared to previous at-
tempts. For more general distortion invariance this
filter has the advantage over rotation invariant filters
since it can be easily combined with mechanical or
electronic rotation to yield a system with rotation and
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scale invariance maintaining the intrinsic shift invari-
ance of Fourier plane processors.

II. Logarithmic Radial Harmonic Transform

Using an approach similar to our procedure for rota-
tion invariant filtering with circular harmonic filters as
described in Ref. 3, here too we start with the correla-
tion operation

Cij(xoyo) = ffi(xy)m;(x - xoy- yo)dxdy, (1)

where mj(x,y) is some characteristic filter function
matched to the input pattern fj(x,y). We focus our
attention on the value of the correlation function at the
origin that reduces to the inner product of fi and mj,

Cij(0,0) = ffi(xy)m;(xy)dxdy, (2)

keeping in mind that the distribution over the whole
plane should be considered for efficient pattern recog-
nition.

To treat the subject of rotation and scale variance it
is advantageous to convert into polar coordinates with
Eq. (3) given now in the form

C(O) = i: I: f(r,O)m*(r,O)rddr.
O i

(3)

Here and in the following indices are suppressed for
convenience whenever possible without causing ambi-
guities. To represent the response (at the origin) for
an object with its scale changed by a factor a and
rotated by an angle a we use the notation

J ,

C(O~~~~~JaOa) = ff ar,0 + )m*(r,O)rd~dr. (4)

For an ideal distortion invariant filter one would like to
keep C(O;a,a) constant regardless of the values of a and
a. In Ref. 3 and earlier work10'1 ' rotation invariance
was extensively studied, and here we concentrate only
on the effects of scale variation using the shorthand
C(a) for the relevant correlation function. Denoting
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by F(p,0) the Fourier transform (FT) of f(r,O) and by
M(pA) the FT of m(r,O), the scale dependent correla-
tion function may be also written in the form

r2 rrR 1 P p
CMa)= lO - FY\ (-,0 M* (p,(k)pdpd0b, (5)

where we took into account the finite size of the filter
R. Since previous research indicated improved filter
performance with low frequencies removed, these were
eliminated here too by a high pass filter of radius d. A
change of integration variables to r = p/a converts the
equation into

I2?r jR/a
C = |F(-r,0)M*(ar,0)rdrd.

L fd I. (6)

The scale parameter has been transferred to the filter
function and to the limits of integration. We shall
return to this subject in Sec. V while here we attempt to
design a filter which yields a correlation function given
by

C(a) = C0 exp~ja(a)].

a,

a =1. a=2

P%

Fig. 1. Input pattern for the computer experiments from which the
letter F should be recognized. The x in the large F was the origin for

the filter generation, and the scaling factors are as indicated.

(7)

If a(a) is any real function of a and CO is a constant, one
obtains scale invariance with regard to power detec-
tion.

With the successful applications of phase-only cir-
cular-harmonic filters3 in mind, one is tempted to con-
sider a similar approach for scale invariance. Thus we
introduce the phase-only LRH filter function

M'(p,) = exp[UQ(P)](p/d)JP/w, (8)

where Q() is an angular phase function that carries all
the angular information contained in the phase of the
object function,

(= - arg [f F(p,o) (dy pdp] * (9)

The parameter p is the LRH frequency and w is a
normalization constant defined by

w= 1 ln(R/d). (10)
27r

Equation (8) is closely related to the kernel form of the
Mellin transform. Substitution of this filter function
into Eq. (6) yields the relation

Cp(a) = (a yl 2' expQ(0)F [fR/a F(T,0)TjP/wrdT d. (11)
Jo L Ld/a I

This relation is identical in form to Eq. (7) except for
the modifications of the limits of integration. If we
substitute Eq. (9) into Eq. (11) it cancels the phase of
the radial integration leading to a real positive quanti-
ty for the whole integral when a = 1. Thus one may
write

ICP(1)l = f f F(T,p)rjP/WrdT d (12)

where the index p on the correlation function indicates
that it depends on this parameter. Unlike the case of
circular harmonics decomposition, the filter function
is not periodic with p; thus p does not have to be an
integer. To obtain high correlation peaks one may

(a)

Fig. 2. Output distribution
phase-only matched filter.

(b)

for (a) regular matched filter, (b)
The filters were matched to the
rgest F.

start the filter design by choosing p to give a maximal
correlation in Eq. (12) and then proceed with Eq. (11).

Ill. Simulation Experiments

The most convenient way to proceed is to invoke a
specific example. Previous experiments with block
letters indicated that it is most difficult to distinguish
between the letters P and F, such as shown in Fig. 1.
Thus it is interesting to investigate various filters
made to recognize one of these letters against the oth-
er. In a computer experiment filters were generated to
recognize the letter F from the input pattern of Fig. 1.
The performance with a regular matched filter is
shown in Fig. 2(a) with the filter matched to the largest
F. It is clear that the cross-correlation with P is quite
high, much higher than the correlation with the other
sizes of F. The autocorrelation peak of a phase-only
matched filter is 50 times as high [Fig. 2(b)], but the
cross-correlation with P is high too, again much higher
than that with the scaled F.

The experimental results shown in Fig. 2 are, respec-
tively, summarized in lines 1 and 2 of Table I with the
autocorrelation peak intensity normalized to 1 for the
classical matched filter.

To generate a scale invariant filter we return to Eq.
(12) and look for the optimal p by plotting the correla-
tion intensity as a function of p (Fig. 3). This plot
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Fig. 5. Output pattern with LRH filter matched to the largest F of
the input (Fig. 1).

b

Fig. 4. Real (a) and imaginary (b) parts of the LRH filter represent-
ed by four gray levels.

suggests p = 2 as a good choice, and with this value we
may generate the filter by using Eq. (9). A rough
representation of the real and imaginary parts of the
filter are shown in Fig. 4, and the output pattern is
depicted in Fig. 5. The appropriate correlation values
are given in line 3 of Table I.

IV. Laboratory Experiments

To verify the practicability of the new procedure the
computer experiments were repeated in the laborato-
ry. We employed the same IBM PC that was used in
the simulations to generate the input pattern of Fig. 6
and holographic filter functions like the one shown in
Fig. 7. To generate the filters the Fourier plane was
sampled into sixty-four rings of equal width and sixty-
four angular wedges. The holograms were plotted on a
regular dot printer, and the working patterns were
obtained by a twenty-five fold photographic reduction
onto a regular photographic film. Figure 8 shows the
output pattern for a filter made to match the largest F
with an intensity scan across the correlation peaks.
These results indicate very good performance of the
new filters that were implemented with relatively low
resolution requirements involving a total of 64 X 64
information elements.

As in the case of circular harmonic filters, 10 here too
one has a proper center for which the correlation is
optimal. This center may be found by repeating the
procedure of filter generation around many points of
the object and searching for the one that produces the
maximum correlation peak. Naturally this optimal

Table 1. Comparison of Performance for the Various Filters Matched to
Recognize the Large F

(p.2, .-T 1

4 (p2.0,. .l.S( 2.8 1.03 j 2.1 l

ppP
Fig. 6. Input pattern for laboratory experiment.

center will be also a function of the parameter p as is
the case for the circular harmonics decomposition.

V. Response Equalization

Ideally, the procedure described in this work should
lead to a flat system response with regard to scale
variance. Unfortunately, due to the finite extent of
the spatial filter [the limits of integration in Eq. (11)],
the range of the permissible scales is limited, and even
in this interval there is some scale dependence. The
main contribution to the deterioration of filter perfor-
mance with the changing scale is the variation of the
fraction of the input energy incident within the fixed
boundaries of the filter. An additional contribution is
due to a filter mismatch that occurs from frequency
components that did not participate in the filter gener-
ation but come into play as the scale changes. Thus it
is clear that no complete scale invariance can be

242 APPLIED OPTICS / Vol. 28, No. 2 / 15 January 1989

Fig. I.

. I I I . . I � I I . . I . I . . I I "P



Fig. 7. Holographic LRH filter.

Fig. 8. Output distribution and intensity scan along correlation
peaks. Cross-correlations with the P values are invisible due to the

threshold chosen.

achieved by this procedure. The scale dependence for
the examples analyzed in the previous sections is illus-
trated in Fig. 9 together with a comparison with the
more conventional filters to show the improvement.
Experiments indicate a 20% variation of the correla-
tion peak intensity within a range of 4 of the scale
factor. Only half of this range is shown in the figure
(the region of up to a = 2) with a corresponding region
(not shown) down to a = 1/2. To achieve a smaller
variation and wider range one may introduce some
modifications to the filter function.

Before investigating possible filter modification
schemes we introduce a criterion to be used for com-
parison. A good criterion is defined by the area en-
closed between the actual response curve and an ideal
flat response:

IIC(a) - C(1)11da

aoIC(1)1 7-

where we defined the range of scale variation between 1
and ao.

Fig. 9. Scale dependence of correlation peaks normalized to unity.
The relative intensities are compared in Table I. MF, matched
filter; POF, phase-only matched filter; LRH and modified LRH with

s = 0.05.

Observation of Fig. 9 indicates a general trend of
degradation with increasing a when more of the energy
is concentrated in higher spatial frequencies. Thus a
straightforward approach toward achieving a flat re-
sponse is the suppression of low frequencies that corre-
spond to the larger objects by a small amplitude at-
tenuating component in the filter function. This
component can be introduced as a small imaginary
part of the parameter p in Eq. (8) leading to a modified
filter function.

M*(po) = expUQ(0)](p/d)s+iP/W. (14)

An optimization procedure led to a minimal e for s =
0.05. The performance of a filter designed with this
optimal s is summarized in line 4 of Table I and also
shown in Fig. 9.

VI. Conclusions

In this work we introduced a new kind of radial
transformation to generate scale invariant filters.
The superior performance of these filters was demon-
strated by computer simulations and laboratory ex-
periments.

The initial goal of the present research project of
employing low resolution devices was preserved and
demonstrated by using a simple dot printer for the
generation of the filters and regular photographic film
in the actual experiments.

The laboratory experiments and computer simula-
tions were performed with phase-only filters leading to
high throughputs and good pattern distinction. The
experiments demonstrated that these filters can oper-
ate with a variance of <20% within a scale range of 4.
The small residual scale dependence of the correlation
peaks can be equalized by several procedures, but
these will necessarily lead to a reduction of the correla-
tion peaks.

15 January 1989 / Vol. 28, No. 2/ APPLIED OPTICS 243



References
1. J. Shamir, H. J. Caulfield, and J. Rosen, "Pattern Recognition

Using Reduced Information Content Filters," Appl. Opt. 26,
2311 (1987).

2. J. Rosen and J. Shamir, "Distortion Invariant Pattern Recogni-
tion with Phase Filters," Appl. Opt. 26, 2315 (1987).

3. J. Rosen and J. Shamir, "Circular Harmonic Phase Filters for
Efficient Rotation-Invariant Pattern Recognition," Appl. Opt.
27, 2895 (1988).

4. D. Casasent and D. Psaltis, "Position, Rotation, and Scale In-
variant Optical Correlation," Appl. Opt. 15, 1795 (1976).

5. K. Mersereau and G. M. Morris, "Scale, Rotation, and Shift
Invariant Image Recognition," Appl. Opt. 25, 2338 (1986).

6. G. F. Schils and D. W. Sweeney, "Iterative Technique for the
Synthesis of Distortion-Invariant Optical-Correlation Filters,"
Opt. Lett. 12, 307 (1987).

7. T. Szoplik, "Shift and Scale-Invariant Anamorphic Fourier Cor-
relator," J. Opt. Soc. Am. A 2, 1419 (1985).

8. T. Szoplik and H. H. Arsenault, "Shift and Scale-Invariant
Anamorphic Fourier Correlator Using Multiple Circular Har-
monic Filters," Appl. Opt. 24, 3179 (1985).

9. A. Mahalanobis, B. V. K. Vijaya Kumar, and D. Casasent, "Spa-
tial-Temporal Correlation Filter for In-Plane Distortion Invar-
iance," Appl. Opt. 25, 4466 (1986).

10. H. H. Arsenault and Y. Sheng, "Properties of Circular Harmonic
Expansion for Rotation-Invariant Pattern Recognition," Appl.
Opt. 25, 3225 (1986).

11. G. F. Schils and D. W. Sweeney, "Rotationally Invariant Corrla-
tion Filters for Multiple Images," J. Opt. Soc. Am. A 3, 902
(1986).

NASA continued from page 218
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Fig. 7. Fast Fourier transforms of temperature signals indicate the
spatial frequencies of striations that have been found in grown

crystals.

This technique appears to be a useful procedure to help determine
the sources of some growth-induced crystalline defects. The investi-
gation of other processes that may be sensitive to small temperature
fluctuations, such as diffusion, precipitation, and corrosion, may
also benefit from this technique.

This work was done by Archibald L. Fripp, Jr., Ivan 0. Clark, and
William J. Debnam, Jr., of Langley Research Center; Patrick G.
Barber of Longwood College; Roger K. Crouch of NASA Headquar-
ters; and Richard T. Simchick of PRC Kentron, Inc. Inquiries
concerning rights for the commercial use of this invention should be
addressed to the Patent Counsel, G. F. Helfrich, Mail Code 279,
Langley Research Center, Hampton, VA 23665. Refer to LAR-
13670.

Contactless coupling for power and data
An experimental flat-plate coupling transmits digital data signals

and electrical power across a small gap between two modules. Un-
like multiple-pin electrical connectors, the two halves of the cou-
pling do not have to be aligned precisely for mating; thus, the
coupling concept may be a useful substitute for electrical connectors
in equipment that has to be assembled by robots, remote manipula-
tors, or humans working in protective clothing or otherwise restrict-
ed in dexterity.

The coupling includes a power transformer operating at a frequen-
cy of 20 kHz. Each of the mating modules contains half of the pot

shaped core of the transformer and a spiral winding (see Fig. 8).

Two versions have been built: one to transfer 100 W of power, the
other to transfer 1000 W. The transformer is designed to operate at
maximum efficiency with a gap of 0.25-0.5 mm between the halves of
the core. This eliminates the need to force the halves into contact
and thereby also minimizes wear of the mating surfaces. The 100-W
version of the transformer has been tested for its performance with
various gaps, lateral displacements, and angular misalignments.
Within the tolerance range, the transformer exhibits an efficiency as
high as 97%.

The data-transmission system includes light-emitting diode
transmitters, positive/intrinsic/negative (PIN) diode receivers, and
Motorola (or equivalent) emitter-coupled-logic supporting electron-
ic circuitry. The transmitting and receiving diodes are equipped
with lenses that give some divergence to the transmitted light beam
and field of view, respectively. Consequently, the digital signal
coupling also has some tolerance to separations and misalignments.
The data transmission system has been tested with a 50-MHz signal
representative of a 100-Mbit/s nonreturn-to-zero pulse code.

This work was done by John C. Moody and Joseph W. Foley of
OAO Corp. for Goddard Space Flight Center. Refer to GSC-13059.
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Fig. 8. Split transformer and optoelectronic components transmit
electrical power and digital signals, respectively, across a small gap.
This coupling would be useful in robotically assembled equipment
because it tolerates some misalignment. The coupling also offers
higher reliability due to one overall alignment mechanism as op-

posed to multiple pin/socket alignment requirements.
continued on page 257
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