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The principle of representing continuous complex-valued functions by their decomposition into three
positive-valued ones is proposed for the generation of complex reference functions for a joint transform
correlator. Three basic approaches involving coherent and incoherent superposition of the component
functions are analyzed. The potentials and limitations of the techniques are discussed.

1. Introduction

One can usually implement a joint transform correla-
tor (JTC)1 by using positive inputs and references.
Earlier work has indicated that the projection of
complex-valued reference functions onto the input
plane can enhance the performance of these correla-
tors.2 4 Unfortunately, with current technology only
holographic methods are available for implementing
complex-valued functions. These are inconvenient
because of the large space-bandwidth product re-
quired and the need to work off axis with limited
diffraction efficiency.

The decomposition of a complex function into
positive-valued functions has been proposed in the
past for incoherent processing5 and used in the
encoding of computer-generated holograms.6 In this
paper we propose to generate continuous complex
reference functions for the JTC that employs a
three-component decomposition.

Three planes are distinguished in the JTC, namely,
the input plane where the target and reference func-
tion are placed, the Fourier plane where the joint
transform hologram (JTH) is recorded, and the out-
put or correlation plane. On each of these planes it
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is possible to superpose the partial results obtained
with each component function at the input.

Accordingly, three basic techniques are presented
and compared in what follows. The first involves
coherent superposition of the component real func-
tions at the input plane to obtain a single joint
spectrum. The second is the incoherent addition of
joint spectra obtained with the component functions,
whereas in the third method the correlations with the
three-component functions are superposed.

The theoretical basis and methodology are de-
scribed in Section 2, whereas computer simulations
and preliminary experiments are presented in Section
3. Discussion and conclusions are given in Section 4.

2. Theory and Procedures

The basic idea behind our procedure is to generate a
complex wave front by the superposition of phase-
shifted real functions. It is well known that any
complex function h(x, y) = I h(x, y) I exp[+(x, y)] can be
decomposed, in the complex plane, into two real
functions, h1(x, y) and h2(x, y), along two orthogonal
directions. However, since we assume that only
positive values can be produced with transparencies,
this procedure must be modified.

One possibility to implement a full complex-valued
reference function, using only two positive functions
with a constant phase difference between them, is to
reduce the dynamic range of the component functions
by adding a bias [Fig. 1(a)]. Unfortunately, such a
bias is also transferred to the correlation plane of a
JTC leading to a substantial degradation of the
signal-to-noise ratio. A better alternative is to con-
sider the decomposition into three positive functions

4398 APPLIED OPTICS / Vol. 33, No. 20 / 10 July 1994



t ............h
h2 * / 
0.5 1 2

0.5 hi
(a) (b)

Fig. 1. Representation of a complex function by real positive
functions: (a) addition of a bias to the real and imaginary
components with reduction of the available dynamic range, (b)
decomposition into three functions along constant phasors.

[Fig. 1(b)], to be superposed later with constant phase
differences:

h(x, y) = hi(x, y) + h2(X, y)exp(i 27)

+ h3(x, y)expei i )* (1)

The function h(x, y) can be generated by the three real
and positive components using coherent superposi-
tion in an interferometerlike setup. We show in
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Fig. 2. Interferometric arrangements to perform correlation with
complex references through (a) coherent superposition, (b) incoher-
ent superposition. PT, piezoelectric transducer; M, mirror; BS,
beam splitter; L, lens; f, focal length of L; PW, plane wave. h, h 2,
h3, and fare positive transparencies.

Subsections 2.B and 2.C that in a JTC the procedure
can also be implemented by incoherent superposition.

A. Superposition at the Input Plane

The complex function can be generated through
coherent superposition of the wave fronts that come
from the component functions in an interferometric
arrangement, as indicated in Fig. 2(a), which shows
an interferometer composed of three arms, each
containing a different transparency, h1 , h2, and h3.
The transparencies are aligned and at equal optical
distances d from the output beam splitter. The field
in the Fourier plane can be written taking into
account the linear property of the Fourier transform
(FT):

9Sfh1(x, y) + f(x, y + b)} + _9T{h2(x, y)exp(i2)J

+ F{h3(x, y)exp(i)3)} = H(u, v) + F(u, v)exp(i2rbv),

(2)

where (+2 = 2r/3 and 4)3 = 4rr/3 are the phase
differences among the arms of the interferometer,
and b is the in-plane separation of f and h. Record-
ing this field in a square-law detector yields the joint
spectrum off and h.

Note that not only the reference can be made
complex, but also the object function f.

B. Superposition at the Fourier Plane
The interesting region of the output plane in a
classical JTC is the cross correlation, f * h, of the
input (f) and the reference (h). Suppose we place h1
in the input plane, together with f, register the
Fourier plane intensity pattern, and proceed in the
same way with h2 and f. If we sum both spectra
(incoherent superposition) and perform the FT of the
result, we obtain the correlation f * (h + h2) at the
output plane. This follows from the linearity of the
FT, as is also discussed below.

To apply the above property to an arbitrary com-
plex function h, we decompose it as in Eq. (1). Each
component can be presented separately, with its
corresponding phase, at the input of a JTC together
with the input function f(x, y). For example, if we
place h2(x, y)exp(i27r/3) at a distance b from f(x, y), we
obtain, in the Fourier plane, the intensity distribu-
tion

IF+H 2 1 2 = IF12 + H2 12 + IFIIH 2 1

x exp i[2rrbv + 4iF(u, v) - )2(U, ) - 3]

+ IF H2Iexp{-i[2Trbv + 4)F(u, v)

(3)
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where IFIexp(i4)F) and H2 1exp(i4)2) are the FT's of
f(x, y) and h2(x, y), respectively. Proceeding in the
same way with h1 and h3 and adding the three results
we obtain

qI F+ Hi 2 = 31F12 + 1H 1
2 + IH212 + IH312

+ IFI IH I exp[i(2rrbv + 4 F - 1)]

+ IFII H1I exp[-i(2rrbv + OF 4)i)]

+ FII H2 exp i(2bv + 4F - 2 - 3)]

+ IFIIH2 exP[-i(2Trbv+4F- 2 y 3)]

+ FI IH3exp i(2nrbv + 4)F - 4)3-

+ IF IH3 Iexp[-i(22rrbv + OF

-4) 3 )]. (4)

We obtained the complex amplitude distribution over
the output plane of the JTC by performing a FT of the
expression in Eq. (4):

c(xy) = 3f*f+ h1 * h1 + h2 * h2 + h3 * h3

+ f(x, y) * hi(x, y) + h2(x, y)exp(i 3)

+ h3(x, y)exp(i 3r)] * B(x,y - b)

+ f(-x, -y) * hi(-x, -y)

+ h2(-x, -y)exp(-i 3 )

+ h3(-x, -y)exP(-i 3 )| * 8(x, y + b), (5)

where we have used the hermitic property of the FT
and the fact that the FT of F*H equals [f * h](x, y).
* and * are the symbols for correlation and convolu-
tion, respectively. Substituting Eq. (1) into Eq. (5)
yields the last and desired result:

c(x, y) = 3f * f + h1 * h1 + h2 * h2 + h3 * h3

+ f (x, y) * h(x, y) * 8(x, y - b) + f (-x, -y)

* h*(-x, -y) * 8(x,y + b). (6)

It is important to note that the last two terms of Eq.
(6), which correspond to the correlations f * h and
h * f, are separated from each other and from the
other terms in the output plane. It is therefore
possible to treat them independently.

C. Superposition at the Correlation Plane

Superposition at the output plane of the JTC can be
done by taking advantage of the linearity of the
correlation operation. The complex filter h is decom-
posed again as in Eq. (1) and three correlations in a
regular JTC arrangement are performed, leading to

Ck = f * hk, k = 1, 2, 3. (7)

Coherent superposition is possible by adding Fou-
rier lenses to the interferometric arrangement de-
scribed in Subsection 2.A. Correlation c is obtained
according to the equation

C = f * h = c1(x, y) + c2 (x, y)exp(i 2i)

1 47w\+ C3(x, y)exp~i3) (8)

The implementation of this procedure, however, is
difficult, and a much simpler procedure consists of
separate detection of the three correlations Ck2 and
their numerical superposition in a digital computer to
obtain either c or I 2. Since both f and hk are
positive and real, the Ck are also positive real and the
Ck2 contain all the necessary information. c can be
calculated as in Eq. (8) and the squared amplitude can
be calculated as follows:

IC12 = C1
2 + C2

2 + C 3
2 -cIc 2 -clc3-C2C3- (9)

Superposition at the correlation plane with two com-
posing functions for the specific case of a circular
harmonic expansion filter has been proposed by Yu
et al. 7

D. Optical Implementation

All component functions hi are real and positive and
thus may be displayed on spatial light modulators
(SLM's) or as transparencies.

For coherent superposition at the input plane, it is
possible to use the configuration of Fig. 2(a) to achieve
separate optical paths for the transparencies. The
path differences can be adjusted by placing the mir-
rors on piezoelectric transducers or by inserting
transparent plates or electro-optic materials to pro-
duce the constant phase shifts required. Conse-
quently the system will behave as if the input refer-
ence were the complex function h(x, y).

The same architecture is also convenient for inco-
herent superposition at the Fourier plane for which
only two arms are needed. Figure 2(b) depicts a
possible setup. Alternative placement of the hi's on
the same channel, while the object function is on the
other channel, yields three different JTH's [see Eq.
(4)] that can be digitally recorded and added in a
computer. Before each recording, a X/3 shift is
performed with the piezoelectric mirror. Displaying
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the result on a SLM in a FT system gives the
correlation of target f and reference h (now a complex
function) and other terms as seen from Eq. (6). A
regular JTC configuration can also be used when the
phase lags are obtained with phase plates.

Alternatively, a simple approximate implementa-
tion can be obtained under the assumption that the
distance b between the input and the filter is big
enough compared to their dimensions along the sepa-
ration axis. Three regular JTH's produced with f
and hk (k = 1, 2, 3) are digitally recorded. The JTH
corresponding to f and h2 is translated a distance
1/3b in the spatial frequency domain, leading to

JTH2 = IF + H2 lu 3 -

1 2 

(b 3b

+ *F(u v - 3j) H2u, v - )

x expji27rb(v -b

+ 4)(u V -3) -V)(u, V -
+ F(u, v - )2 H2 (u, v -

x exp{-i[2,b(v - b

+ 4F(U V - ) - UV2(uX V - )]}. (10)

The JTH of f and h3 is translated in the same way to
2/(3b) and the three spectra are added. To see the
final result we calculate the FT of one of the trans-
lated JTH's:

sr{JTH2J

= f(x, y)exp[-i(3)y] * f(x, y)exp[ i(3)Y

+ h(x, y)exp[-i(2 )y] * h(x, y)exp[ -i(j)Y

+ f(-x, -y)exp [i( )] * h(-x, -y)

x exp[i( )Y] * 8(x,y + b)exp(-i 3)

+ f(x, y)exp [-i( )y * h(xy)

x exp[-i(3b)y] * (x, y - b)exp(i 3)- (11)

The FT of the three superposed JTH's will contain
two correlation terms, one of which is

Capr = f(x,y - b) * hl(x, y - b)

+ f(x, y - b)exp[-i(3b)(y - b) * h2(x, y - b)

x exp[-i( )(y - b)] exp(i 3)

+ f(x,y - b)exp[-i(3b)(y - b)] * h3(x,y - b)

x exp[-i()(y - b)] exp(i 3). (12)

If 3b >> 4a, where 2a is the maximum width of the
input and filter, the linear phase factors can be
neglected, leading to f * h as expected. In other
words, the error can be neglected if the IFIIHkI
function variations are small compared to the spatial
frequency of the fringes. In this way we take advan-
tage of the optical FT to obtain the spectra, whereas
the needed digital operations are simple and fast.

3. Laboratory and Simulation Experiments

A. Coherent Superposition
To demonstrate the feasibility of the procedure de-
scribed in Subsection 2.A, a particular case of complex-
valued function, a bipolar function was implemented.
It consists of two slightly shifted delta functions with
a 7r phase difference. It can be shown that correlat-
ing a two-dimensional function with such a reference
results in a one-dimensional edge enhancement (see
also Section 4). We demonstrate the implementa-
tion of the real bipolar-valued reference function, in
this example, by decomposing the reference into two
different positive-valued delta functions. Each of
them is placed in a different channel of the interferom-
eter shown in Fig. 2(a), and the superposition is
performed coherently. In principle, the two delta
functions could be implemented by using pinholes
but, for the sake of light efficiency, small lenses were
used to transform part of the beams in each interfer-
ometer arm into an approximate point source (delta
function) at its focal plane. Optically this focal plane
must coincide with the input plane. Only half of the
input space is available in a JTC, so the lenses must
have less than half of the dimension of the optical
aperture. The proper phase difference is adjusted by
the piezoelectrically mounted mirror, and the relative
displacement of the point sources is chosen to obtain
the desired resolution on an edge-enhanced image.
Once the adjustment of the particular reference
function is completed, the input function may be
inserted and varied in real time if SLM's are em-
ployed.

Figure 3(a) shows the reconstruction of a conven-
tional JTH for a rectangle as the input object by one
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Fig. 3. Reconstructed images for a univalued rectangle: (a)
conventional joint correlation with a delta function, (b) joint
correlation with a bipolar filter for edge enhancement.

of the delta functions. The joint transform spec-
trum with the two point sources present is the
coherent superposition of two interference patterns.
A moir6 pattern is generated, which causes selective
cancellation of the information not associated with
the edges. The edge enhancement of the object is
thus obtained after reconstruction as shown in Fig.
3(b).

If the recording of the JTH is not linear, some
interesting effects may occur. For example, overex-
posure, which results in saturation, leads to the
reconstructed image shown in Fig. 4(a). The sharp
bright line that marks the edge is replaced by a sharp
dark line between two bright lines. This nonlinear
effect was modeled and the simulated result is shown
in Fig. 4(b).

B. Incoherent Superposition

The experiments described in Subsection 3.A were
repeated with the incoherent method described in
Subsection 2.B with similar results. The incoherent

0.2[

0.11-

0 10 20
(b)

Fig. 4. Edge enhancement with nonlinearities in the JTH record-
ing: (a) experimental result, (b) simulation with the same degree
of saturation.

superposition in the Fourier plane is also demon-
strated by the correlation between the letter E and its
second-order circular harmonic component (CHC).8

Figures 5(a)-5(c) show the input consisting of the
letter E in two rotated positions and the letter T,
together with three different components hk of the
complex-valued CHC. Figures 5(d)-(f) display their
respective JTH's, and Fig. 5(g) shows their superposi-
tion after translation in accordance with the approxi-
mate method described in Subsection 2.D. The simu-
lated correlation output is shown in Fig. 5(h). As
expected the letter E produces a correlation peak
independent of the angular position, whereas the
letter T produces a much lower and dispersed correla-
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Fig. 5. Superposition at the Fourier plane correlation of an input pattern with a CHC of the letter E: (a)-(c) three components of the
filter by the input, (d)-(f) three JTH's, (g) the JTH obtained after superposition (approximate solution), (h) the correlation output after
Fourier transformation.

tion. This result can be compared to the exact
solution shown in Fig. 6(d) to note the similarity in
spite of the fact that the target and reference were
relatively close.

Incoherent superposition at the output plane was
performed with the same inputs as in Figs. 5(a)-(c).
The spectra obtained [Figs. 5(d)-(f)] are Fourier
transformed, and the correlations Ck

2
= If * hk 12 are
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Fig. 6. Incoherent superposition at the correlation plane. Correlation of an input pattern with a CHC of the letter E: (a)-(c) partial
correlations of the three inputs from Figs. 5(a)-(c), (d) the final exact result after superposition.

shown in Figs. 6(a)-(c). The final result Ic 12 ob-
tained after the superposition is performed according
to Eq. (9) is displayed in Fig. 6(d). The zero order almost
disappears because of the subtractions in Eq. (9).

4. Discussion and Conclusion

The three approaches investigated have their relative
advantages and disadvantages. The superposition
at the Fourier plane needs only two arms in the
interferometer, which reduces alignment and stabil-
ity problems. However, the procedure requires well-
balanced multiple exposures and digital postprocess-
ing that is not so suitable for real-time applications.
The approximate implementation discussed in Subsec-
tion 2.D is adequate for most applications, but at the
expense of partial loss of shift invariance in one
direction.

Coherent superposition at the input plane, on the
other hand, is implemented in real time, but the
optical system is more complicated and subject to
alignment problems and interferometric noise.

Incoherent superposition at the correlation plane is
probably the most robust technique, since no precise
phases or translations are needed. The digital pro-
cessing is simple but still more complex than in the
other techniques.

Preliminary results of a bipolar filter for edge
enhancement and a CHC reference function for JTC
applications are promising. The principle can be
extended beyond the JTC applications. For ex-
ample, the third method described in Subsection 2.D
in its coherent and incoherent form can be adapted to
the 4f correlator with the same bandwidth advantage.

In conclusion, new methods for continuous com-
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plex function generation for a JTC have been pro-
posed. The techniques presented may be considered
as a class of holographic representations with no
reference beams. They have the potential to develop
or emulate complex continuous wave fronts in an
on-axis configuration at the input plane. As opposed
to classical holography for which higher orders are
obtained, only a zero order is attained in this case,
reducing the space-bandwidth requirements of the
recording media. The filter decomposition into three
functions reduces the noise at the output, as com-
pared to the decomposition into two functions, and
saves memory space and time as compared to the
decomposition into four functions.

Since the component functions are real, SLM's can
be used and thus computer control of the process can
be implemented.

This work was performed within the Technion
Advanced Opto-Electronics Center established by the
American Technion Society, New York. J. Rosen
was a National Research Council Research Associate
at Rome Laboratory while this work was performed.
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