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The iterative algorithm, projections onto constraint sets, is employed to generate spatial filters for pattern-

recognition correlators.

The problem of teaching a correlator to classify
many patterns can be described as an optimization
problem.! In the case of shift-invariant pattern
recognition, we sometimes deal with the optimization
of an error function with a huge number of variables,
and therefore we must find efficient algorithms that
can handle a problem with reasonable complexity
and in a relatively short period of time. Recently
a method® to calculate a synthetic discriminant
function® (SDF) from a given training set of objects
was proposed based on the well-known projections-
onto-constraint-sets (POCS) algorithm.* The learn-
ing procedure has been employed on a simulated
joint-transform correlator in order to find a reference
function that can then distinguish between two object
classes.

In this Letter the learning method and its tasks are
modified. The main goal is to introduce a general
procedure for synthesizing SDF’s from a given train-
ing set of any size. At the end of the learning period,
these SDF’s, configured in correlators, can recognize
different objects that belong to the classes on which
they have been trained. This learning method can
be employed simultaneously, and in parallel, with all
the SDF’s of the different classes.

The POCS algorithm has been employed in several
areas of signal processing (with many other designa-
tions), mostly in signal recovery.* Basically, it is an
iterative process that transfers a function, usually by
Fourier transform (FT), from one domain to another.
In every domain, it is projected onto a constraint set.
The convergence of the process is achieved if and
when the function satisfies all the constraints in both
domains simultaneously.

Unlike for most POCS algorithms, we transform a
function from a SDF plane to a correlation plane by
a special case of a correlation operator. Our correla-
tor configuration is designated as a phase-extraction
correlator (PEC). In the PEC, only the FT phase
distribution of an input object is taken into account
during the correlation process. For any input image
f (x) (one-dimensional notation is used for simplicity),
whose FT is F(u) = |F(u)lexp[ J®(u)], and for a given
spatial filter H(u), the output correlation function of
the PEC is

c(x') = F Yexp[— j®(u)]H (u)}, (1)

where % is the FT operator. The SDF [h(x), which
is the FT of the filter function H (1)] can be obtained
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Based on all the training sets, all the filters are trained simultaneously.

from the correlation function by operation of the
inverse PEC, i.e.,

h(x) = FHexp[j @ (u)]F{c(x")}}. (2)
In contrast to the ordinary linear correlator G.e.,
¢ = ¥F"YF*H}), the PEC guarantees a nondiverging
behavior of the POCS algorithm. Two properties are
the reasons for that benefit. First, as follows from
Eq. (1), it is linear operator related to A(x) as a sys-
tem input. Second, the PEC is an energy-conserving
operator. This property is easily obtained based on
Parseval’s theorem, as follows

f le(x)Pdx’ = f lexpl—j (w)]H (w)*du

- ] H ()P = f lhx)Pdx.  (3)

Our overall goal is to obtain a desired intensity
distribution in the correlation plane, and therefore
the first constraint set is considered in this plane.
In a typical pattern-classification task, we assume
K object classes, where in the kth class there are
N, patterns. Our goal is to generate spatial filters
{Hy(u)}¥.,. The kth filter should produce a sharp
peak in the correlation plane when an object from the
kth class is in the input of the classifier or produce
a diffused distribution if an object from the Ith class
(I # k) is present. Because the correlator is space
invariant, we can handle the problem simultaneously
with all the >, N, objects present at the input plane.
All the objects are separated from one another by a
distance that enables us to locate the set of the K
SDF’s between every two objects. That is done in
order to avoid overlapping among the various corre-
lation functions. It is convenient to split the input
plane into K regions, each one containing the N,
objects of the kth class. As a result, the correlation
plane is also split into K regions containing the
respective correlation functions of the objects from K
classes with the SDF’s. The constraint set in this
plane requires the appearance of only Y, N, bright
correlation peaks corresponding to the centers of the
correlations between every object and its proper SDF.
Hence the absolute value of the central points of the
correlation functions related to the objects of the kth
class, with its SDF &, and designated region R,, will
be equal to or greater than a predetermined threshold
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level denoted T;. Since the sharpness of the corre-
lation peaks is not our concern at this point, we do
not force any value around the central points of the
correlation distributions. These areas without their
central points, which are designated as region R,
will remain unconstrained. The dimensions of every
such area are defined as equal to the dimensions of
the corresponding object. The magnitude of all other
points of the correlation plane, designated region R,,
which are above a second threshold level Ty < Ty, will
be constrained to the value of T,. The ratio between
Ty, and T, determines the discrimination ratio (DR)
and can be adjusted by the user during the synthesis
process. The projection operator of the correlation
domain P, is defined as

Pife(x)]
Ty exp[jo(x')] if x' € Ry and |e(x)| < T}

=1 T, exp[jO(x")] if x' € R, and |c(x)| > T, (4)
c(x otherwise

where c(x') = le(x")lexp[jO(x")].

The second domain of the POCS algorithm is the
SDF plane in which the SDF’s are reshaped in ev-
ery iteration. Our aim in this process is to find
SDF’s that classify many objects that are simulta-
neously displayed on the input scan, regardless of
their specific positions. This goal can be achieved
if the dimensions of every SDF are similar to that of
an object (assuming that all the objects in the train-
ing set have approximately the same dimensions).
Therefore the second constraint forces every SDF to
have a predefined finite extended area that is similar
to the object’s area. Since all the SDF’s are calcu-
lated in parallel, they should all appear in the SDF
plane together. In order to avoid overlapping among
the different correlation functions, the SDF’s are
separated such that between every two SDF’s there is
enough space to locate any object. After the projec-
tion, the nonconnected region that the SDF’s should
occupy (according to the above-mentioned guiding) is
denoted S. The second projection is given by

h(x) ifxe S

Palh(x)] = 0 otherwise’

(5)

where A(x) is a complex function composed from all
the K SDF’s, i.e., h(x) = 24 hi(x — dy), and d, is the
distance of A, from the origin. It is well understood
that, in the final classifier, each A, (x) is transformed
separately to a spatial filter and configured alone
in one of the correlation channels, The complete
scheme describing the POCS algorithm is shown in
Fig. 1.

In order to evaluate the convergence of the pro-
posed algorithm we present a nondiverging process,
following Fienup’s study® regarding the phase re-
trieval. The two error measures defined here are
the mean-square errors between functions in the

ith iteration and their projected versions in every

domain, i.e.,

e,

é/kﬂd—am&wﬂm

e 2,

.

éfmm—gmmwu. (6)
Based on the above-mentioned linearity and energy-

conserving properties, the error value e;; can be
written as

€ = fIPZ[hi(x)] - hi+1(x)l2dx~ (7

‘By definition, the projected function of h;1 is the

nearest value to A;,,, and therefore
e, = [lhi+l(x) = Polhicy(x)]Pdx = e3;01.  (8)

Similarly, when we consider the error at the SDF
plane, it is

Cies = [ his(x) = Pyl vy (x)]Pde

- f IPile ()] — cior(x')2dc. ©)

Here again, the projected function of Ci+1 1s the near-
est value to c;,;, and therefore

€241 = /|0i+1(x') - P1[0i+1(x')]|2dx =eni+1. (10)

The overall conclusion is that the values of the
errors series cannot increase and that, in the worst
case, they stay the same at each successive iteration,
ie., eiv; < ey < e1;. The series {e1i}7, is most
important for our purpose, since it indicates how
close the output distribution is to the desired result.
We also see a generalization of the nondiverging
analysis to all POCS algorithms with a linear and
energy-conserving transform operator. The FT as
well as the PEC is a transform operator with those
properties.

In our experiment we chose four versions of the
digit 2 for the first class and four versions of the digit
3 for the second class, as shown in Fig. 2. We calcu-
lated the phase function exp[j®(u)] once by Fourier
transforming the pattern in Fig. 2 and extracting
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Fig. 1. Block diagram of the POCS process.
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Fig. 2. Input training set.
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Fig. 3. (a) SDF plane, including two separated SDF’s
(the real part). (b) The correlation plane after 100 itera-
tions (the absolute value).
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Fig. 4. DR versus the number of iterations for the PEC
learning system (solid curve) and for the linear correlator
(dashed curve).

the phase distribution. Matrices of 128 X 128 pixels
are used, and the digits are limited by a rectangle
of 5 X 5 pixels, whereas every SDF is limited by a
rectangle of 7 X 7 pixels. The POCS process starts
with randomly distributed A(x). In Fig. 3(a) we see
the real part of the SDF after 100 iterations. As
mentioned, the two SDF’s are displayed and cal-
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culated together. The respective absolute value of
the correlation function is shown in Fig. 3(b).” Note
that there are eight strong peaks; however, the four
leftward peaks shift to the left-hand side, whereas
the four rightward peaks shift to the right-hand side.
That phenomenon is due to the fact that the four
leftward peaks are obtained as the result of the
correlation with the left-hand SDF, whereas the four
rightward peaks are obtained from the right-hand
SDF. The desired DR chosen for this experiment was
¥4 = 16. The actual DR is given by

7o (agte) /(aien)

The behavior of vy, during 2000 iterations is shown in
Fig. 4 (solid curve). The DR after 2000 iterations is
14.5 and is greater than 2 just after 50 iterations.

The fact that the learning system is based on the
PEC does not impose such restrictions on the final
classification system. If the goal is to perform the
classification process with the same DR as obtained
at the end of the learning phase, we may continue
using the PEC as classifier. The PEC can be im-
plemented by a digital computer or as an optical
correlator.! On the other hand, in the most realistic
cases the principal information of an image is borne
in the phase distribution of its FT.” Therefore a SDF
calculated on the phase distribution alone can be
sufficient to distinguish among the various classes,
even in a linear correlator. For comparison, the DR
in the linear correlator after every ten iterations of
the learning process is depicted in Fig. 4 (dashed
curve). The SDF, synthesized by the PEC learning
system, succeeds in classifying the different objects
in a linear correlator (y, = 2.5 after 2000 iterations)
even with lower DR than the PEC, as expected.

In conclusion, we demonstrated an example of SDF
learning by the POCS algorithm based on a training
set. The definitions of the constraint sets are not
rigid, and therefore the method can be easily adopted
to solve many other correlation problems and can
satisfy other various constraints on filters or SDF’s.
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