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Nondiffracting images under coherent illumination
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The focal depth of an arbitrary image is extended by optimization of the amplitude and phase distributions
over the entire image. We propose a general method that takes advantage of a detector’s (possibly nonlinear)
response to incident intensity. We demonstrate the method by computer simulations and experimentally,
using computer-generated holograms.  1995 Optical Society of America
Since Durnin’s introduction of the nondiffract-
ing Bessel beam in 1987,1 numerous approaches
have emerged for producing finite-power pseudo-
nondiffracting (PND) beams.2 – 4 Recently, analytical5

and computer-optimized6 solutions for one-dimensional
PND beams were discovered. The natural generaliza-
tion of these developments is a method for extending
the focal depth of arbitrary transverse intensity pat-
terns, producing PND images.

For a given illumination mode, there are two general
approaches to this problem: The first is the use of ex-
tended focal-depth optics (or equivalent pupil filtering)
for imaging arbitrary patterns; this approach, though
general, leads to a degradation of resolution and/or con-
trast for a given aperture size.4,7 The second is the de-
sign of the phase and amplitude distributions at the
image plane so that the diffracted field yields a de-
sired transverse intensity pattern over an extended
distance (focal depth). This has been attempted for
continuous-phase masks8 and proven successful only
for very simple transverse images.9,10 Here we in-
troduce and demonstrate a novel method for optimiz-
ing the image-plane phase and amplitude distributions
and utilizing a detector’s intensity response to yield
arbitrary PND binary images.

We begin by considering the image constraints im-
posed by the detector. A typical detector response
curve11 is shown in Fig. 1. Below some threshold in-
tensity I0 the incident illumination is not detected;
above some intensity I1 the illumination is detected;
and between these two levels the detector behaves un-
predictably. It is this intermediate region that we
with to avoid.

This allowed intensity variation affords us a degree
of freedom in designing the mask—instead of impos-
ing a transmissivity of zero or one (binary transmis-
sion), we are allowed in dark regions to transmit an
amplitude as high as

p
I0 and in light regions as low

as
p

I1. Additionally, since the detector is insensitive
to the field’s phase, we may implement an arbitrary
phase shift at each mask pixel and therefore design
the phase distribution to maximize our image’s focal
depth.

We are now in a position to tackle the mask design
problem. To extend our original depth of focus s by
some multiple, say, to ks, we must ensure that the im-
age remains focused in the entire volume between the
image plane and the final focused plane. Given some
0146-9592/95/171743-03$6.00/0
minimum feature size Dx, the distance s over which
we know little diffraction will occur is12 s ­ sDxd2yl,
where l is the illumination wavelength. Thus, to en-
sure a focal depth of ks, we must check the image at
intervals of s (henceforth termed critical planes) and
make sure that it remains focused at each of these
(Fig. 2). To this end, we define an error measure (e.g.,
a Euclidean distance square) after thresholding that
quantifies the deviation of our image from the desired
one, calculate at each critical plane, and sum over
all these planes to obtain the total error of our field
distribution. Because we are concerned with image
coordinates that may stray signif icantly from the z
axis, we use the Rayleigh–Sommerfeld formula13 to
calculate the diffracted field (Fig. 3):

usx, y, zd ­
Z Z

usx1, y1d
z expsikrd

ilr2 dx1dy1 ,

where sx1, y1d are the image-plane coordinates and
r2 ­ sx 2 x1d2 1 sy 2 y1d2 1 z2. Note that we as-
sume for now quasi-monochromatic, coherent illumina-
tion and an imaging system within its resolution
limit (therefore the complex mask distribution equals
the image-plane field distribution). Next we inde-
pendently optimize the mask’s amplitude and phase
distributions, a process that (as shown in a previous
publication6) converges to an error minimum for the
complex mask distribution. In this case we iteratively
perform a pattern search optimization14 on the ampli-
tude and phase until a common minimum is attained.
We optimize until a postthresholding error of zero is

Fig. 1. Typical detector response versus exposure
intensity.
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Fig. 2. Relationship of critical planes to classical depth of
focus s.

Fig. 3. Schematic diagram of a typical imaging system.

reached on all critical planes. If zero error is not at-
tainable, we consider the problem unsolvable by our
method, given mask resolution and detector thresh-
olding parameters. At this point we have the desired
complex mask distribution, which may be physically
realized in several different ways.15

To demonstrate the generality of this technique,
we chose the aperiodic, multicornered image shown
in Fig. 4(a). The stimulated intensity patterns after
diffraction for a binary transmission mask and an op-
timized amplitude-phase mask are shown in Fig. 4(b),
and the postthresholding detector response is shown in
Fig. 4(c). Although the binary-mask image becomes
unacceptably distorted at the final critical plane, the
optimized image remains completely undistorted (note
that one pixel corresponds to the resolution limit of the
imaging system, lfyD).

Finally, we implemented the amplitude-phase masks
as Fourier-transform holograms, as shown in Fig. 5.
Given our desired mask distribution gsx1, y1d, we
Fourier transform to Gsx0, y0d and then take

G 0sx0, y0d ­ minsssRehGsx0, y0dexpfi2pusx0 1 y0dgjddd

1 RehGsx0, y0dexpfi2pusx0 1 y0dgj ,

yielding a real-positive mask. Multiplying G by
expfi2pusx0 1 y0dg shifts our pattern to a propagation
angle u ­ lu in both the xz and yz planes; taking
the real part (or, equivalently, adding the complex
conjugate) causes the inverted pattern to appear at
an angle 2u. Finally, adding the constant simply
introduces a focused spot that does not interfere with
our pattern if u is large enough.

Using a CCD to record the transverse images and
postprocessing to simulate detector thresholding, we

Fig. 4. (a) Desired postthresholding image. (b) Simu-
lated intensity pattern before thresholding at the image
plane sz ­ 0d and the two critical planes z ­ 5pixels and z ­
10pixels. (c) Simulated intensity pattern after threshold-
ing at the image plane sz ­ 0d and the two critical
planes z ­ 5pixels and z ­ 10pixels. Here one longitudinal
pixel ­ sDxd2y5l ­ sy5, or one fifth of the normal depth
of focus.

Fig. 5. Experimental configuration for realizing the mask
function gsx, yd.
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Fig. 6. (a) Measured intensity pattern before threshold-
ing at the image plane sz ­ 0d and the critical
planes z ­ 0.7 cm and z ­ 1.4 cm. (b) Measured
intensity pattern after thresholding at the image
plane sz ­ 0d and the critical planes z ­ 0.7 cm
and z ­ 1.4 cm. Images were produced using setup
of Fig. 5, with f ­ 100 cm, u ­ 2.5 mrad, and illumination
l ­ 633 nm.

obtained the results in Figs. 6(a) and 6(b), respectively.
As predicted by our simulations, the optimized mask
images remain focused significantly farther than the
binary images.

In this example, we improved focal depth approxi-
mately twofold by using optimized amplitude-phase
masks; in practice, the improvement in focal depth
depends on the sharpness of the detector’s thresh-
old, attainable mask resolution, and pattern irregu-
larity. Of these, detector thresholding is by far the
most inf luential parameter, since a sharper thresh-
old means larger tolerable amplitude f luctuations and
more freedom in optimizing the mask. Because the
assumed thresholding intensity response applies, with
appropriate parameters, to a wide range of detectors
and object media, from rod cells in the human eye16

to avalanche photodiodes9 to photolithographic photo-
resist,17 this method is quite general, but its success de-
pends intimately on the application for which it is used.
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