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Synthesis of nondiffracting beams in free space
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A novel method of designing the longitudinal intensity profile of a diffracted beam in free space is proposed. By
use of this method illumination of an arbitrarily synthesized aperture can yield a desired intensity distribution,
including a constant (nondiffracting) curve, along a chosen limited range.

In 1987 the so-called nondiffering beam was disco/-
ered by Durnin.! This beam, with initial transver-
sal distribution of a truncated zero-order Bessel
function, propagates in free space, while the central
spot intensity along the longitudinal axis remains
approximately unchanged for a much longer distance
than that of a similar Gaussian beam. Since that
time some other beam functions with interesting
propagation properties were studied,?® and different
methods of implementation were proposed.®!

In this Letter we propose a general method of de-
signing the intensity profile along the propagation
axis of a beam diffracted from an arbitrary aperture.
As a special case, we demonstrate the technique on
a narrow and intense spot beam with a weak and
wide background level. In this example the chosen
intensity distribution along the longitudinal axis is a
constant level along some selected interval. As we
demonstrate, our technique improves the properties
of the original Durnin nondiffracting beam. In what
follows, the method is described, starting from the
scalar diffraction theory.

Based on the Rayleigh—Sommerfeld formula the
complex amplitude distribution along the longitudi-
nal axis z of a beam diffracted from an aperture
f(r,0) is'?

2n 3
u(z) = 71X fo jo f(r,0)h(r,2)rdrdé, 1)

where h(r,z) = [exp(jkR)/R]cos ¢, R = (2* + r’)'?,
cos ¢ = z/R, (r,0,2) are the cylindrical coordinates
of the space, A is the wavelength, and & = 27/A is
the wave number.

Our aim is to find some initial aperture f(r,#0)
that yields a desired intensity function Io(z) = |u(2)}?
along a predefined interval Az on the z axis. We
confine the search to aperture functions that possess
specified properties. Therefore the problem may be
defined as follows: Find the aperture distribution
f(r,8) of specified properties such that substitution
of it into Eq. (1) yields, as closely as possible, the
desired intensity distribution Io(z) along an inter-
val Az. Now we have a constrained optimization
problem, which will be solved by an extended ver-
sion of the projections-onto-constraint-sets (EPOCS)
algorithm.!314
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In order to formulate the given problem in a proper
form for the EPOCS we rewrite Eq. (1) as follows:

27 x g
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2jA pt+<{
(2)

where p = r2, ¢ = 2%, and f'(p, 6) is the aperture func-
tion in the new coordinates. Equation (2) contains a
correlation integral, and therefore by using the con-
volution theorem we can define a function ¢(¢) from
Eq. (2) as follows:

o) = 22O [ rH exp(jzmod) dv, @)

where T'(v) and H'(v) are the Fourier transforms of
the t(p) and h'(p), respectively, and

o _
f’(p,@)d@, h’(p)= M

0

t(p) =
(4)

Next we explain the EPOCS algorithm. The
EPOCS algorithm may start with an arbitrary ran-
dom aperture function ty(p). In iteration i of the
algorithm the .aperture function ¢;(p) is projected
onto the constraint set in the aperture plane. The
precise definition of this projection, Pi[ti(p)], de-
pends on the choice of constraints, which usually
affects the magnitude distribution of ¢;(p) but not
the phase distribution. [See, for example, Eq. (7)
below]. The projected aperture is correlated with
h(p) to yield c;({), according to Eq. (3). In fact,
we perform operations, as in the following expres-
sion: ¢;(¢) = F HF{P.[t:}(H")}, where T is the
Fourier transform. The result is projected onto
the constraint set in the correlation plane, where
the projection is defined by

Pyfci({)]

12
_ 2{%"] explj V()]

ci({) otherwise

(EAL , (5)

where ¥;(¢) is the phase distribution of ¢;({). Ac-
cording to Eq. (5), such a projection constrains the
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Fig. 1. Transverse intensity distribution of the beam
obtained from (a)-(d) the EPOCS algorithm and (e)—(h)
the Bessel beam Jy(ar) at z = 0 [(a), (e)], z = 52 cm [(b),

()], z = 104 cm {(¢), (g)], and z = 156 cm [(d), (h)].

intensity |u({)|? to be equal to Iy({) along the in-
terval Af. The next step is to return to the aper-
ture plane, and we do this by calculating the (i +
1) aperture function, using the formula ¢;,,(p) =
F YF{Py[c;l}(H")'}. These four operations repeat
iteratively, while in every iteration we calculate the
error function

lct(év) - Pz[ﬁ({)]‘z dsg. (6)

e; = ——
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This expression is taken to reflect the performance
of the aperture £;{p). We convert the final obtained
aperture to a two-dimensional aperture function by
the coordinates transform t(p) — t(r) and then by
making a rings function f(r,8), where the value of
each ring of radius r is equal to ¢(r).

As we proceed, are we assured of convergence of the
error function? In the present state of the algorithm
we cannot say much about its convergence properties,
except to remark that it has worked well with many
examples. The correlation here is not an energy-
converging process; therefore we cannot prove the
nondiverging property!* of the EPOCS. However, in
the Fresnel approximation there is a Fourier relation
between an aperture and the axial distribution,!® and
therefore the energy is conserved in passing between
the domains in this approximation. The principal
point is that the synthesis of the axial profile can be
declared a simple optimization problem. There are
many algorithms that can solve this problem, and we
have picked one that seemed to us to be easy, rapid,
and successful in the sense that the optimal result
(local optimum) yielded an error less than the error
of the Bessel beam. This comparison is demonstra-
ted next.

Let us try the proposed approach by considering a
nondiffracting beam and comparing the results from
EPOCS with those of the Bessel beam.! The desired

output distribution is I4(z) = constant along some
longitudinal interval Az. In order to make a fair
comparison we take the transverse distribution of the
field in the plane z = 0 to have the central lobe of
a Bessel function Jy(ar). The radius of the central
lobe is wy = 150 um (a = 160 cm™), and it is sur-
rounded by a low background level up to some limited
radius ro = 2 mm. The maximum absolute value of
the background level, s, is determined to be equal
to the maximum absolute value of the first sidelobe
of the Bessel function (s = 0.4). This can be summa-
rized by the projection formula

Py[t(p)]
Jola /o) 0</p<w

- sexp[joi(p)] ti(p)>sAwy < fp<ry e
ti(p) tp)=sAwe< p<rg
0 \/[_J > ro

where ¢;(p) is the phase distribution of ¢,(p). The
compared Bessel distribution Jo(ar) is shown in
Fig. 1(e), and in this experiment the concerned inter-
val Az is 1.5 m. This choice is made here arbitrarily,
but, as we know from many computer experiments,
the larger we choose Az, the greater the error is likely
to be of the EPOCS algorithm at the ith iteration.
The transverse intensity of the EPOCS beam,
shown in Fig. 1(a), was obtained after ~1000 iter-
ations of the EPOCS algorithm. Transversal cross
sections of the two beams for A = 0.5 um are de-
picted in Figs. 1(a)-1(d) for the synthetic beam and
Figs. 1(e)-1(h) for the Bessel beam, at four differ-
ent distances from the aperture. The axial intensity
[u(2)|> of the beam diffracted from that aperture
[Fig. 1(a)] is shown in Fig. 2(a). For comparison the
performance of the Bessel beam is shown in Fig. 2(b).
These results demonstrate that the new nondiffract-
ing beam is closer to a constant level for a longer
longitudinal interval compared with Durnin’s beam.
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Fig. 2. Intensity distribution along the propagation axis
of the beam obtained from (a) the EPOCS algorithm and
(b) the Bessel aperture Jo(ar).
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Fig. 3. Intensity distribution aloag the propagation axis
of the beam diffracted from a phase-only aperture (solid
curve) calculated by the EPOCS. The dotted curve is the
requested profile Io(2), and the insets show the transverse
cross sections of the intensity at three points along the
z axis.

In other words, an aperture with the same dimen-
sions of a Bessel beam (same central lobe, overall
width, and background maximum value) yields a
nondiffracting beam for a longer distance and with
a greater accuracy compared with the performance
of that Bessel beam.

For the second example we choose different con-
straints in both domains. In the aperture plane the
desired distribution is a phase-only function, and
therefore the projection is

\/;_)<r0 , (8)

o= [expligi(p)]
Plti(p)] 0 otherwise
where ry = 2 mm, as in the first example. The ax-
ial distribution chosen this time is not constant but
some other profile shown in Fig. 3 by the dotted curve
(the controlled interval is between z = 112 e¢m and
z = 319 cm). The axial intensity distribution dif-
fracted from the phase-only aperture is shown in
Fig. 3 by the solid curve. This aperture was obtained
after 500 iterations of the EPOCS algorithm. The
transverse cross sections at various points along the
z axis are depicted also in Fig. 3.

In conclusion, we have demonstrated a way to di-
rect the diffraction distribution along the optical axis
emitted from any given aperture. In particular, we
considered, as an example, the nondiffracting beam,
where the transversal distribution in the nlane 2 =0
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was a narrow intense central lobe supported by weak
wide background illumination. The performance of
this beam seemed to be better than that of the Bessel
nondiffracting beam. Our beam distribution was not
connected to any specific family of functions such
as the Bessel functions. That means that the beam
could be shaped in any form by many kinds of con-
straints. For instance, guided by practical consid-
erations, we may require a binary distribution for
the background illumination of the beam. Finally it
should be mentioned that our method can be general-
ized to reshape any longitudinal intensity profile, or
even any longitudinal complex amplitude profile, at
least for a short interval. All these subjects are of
great interest for future research, and we may expect
to see them in the literature soon.
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