
Phase extraction pattern recognition
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Phase extraction pattern recognition is a special case of nonlinear matched filtering. The phase extraction
procedure is executed on the input function's Fourier transform as well as on the filter function's Fourier
transform, both of which are manipulated for correlation purposes. This novel process is examined
theoretically, by computer simulations and laboratory experiments. The implementation of a coherent
electro-optical phase extraction pattern recognition system demonstrates the advantages of this new
approach.

I. Introduction

Since the development of the VanderLugt optical
correlator1 various improvements have been sug-
gested, both in terms of the filters employed and in
system architecture. Each technique provides its
relative advantages and drawbacks, depending on the
specific task to be performed.

Today it is relatively well accepted that most of the
information about an object lies in the phase of the
spatial spectrum of the object and that the amplitude
distribution is of subsidiary importance.2 Hence, re-
spectable efforts have been made in the generation of
phase-only filters3 (POF). The POF may be viewed as
the result of a nonlinear (NL) operation performed on
some of the information in order to amplify some
concealed details. This operation is usually accompa-
nied by the suppression or rejection of some relevant
information. For example, higher spatial frequencies
are amplified but the information hidden in the
amplitude distribution is lost.

The above approach manipulated only the informa-
tion contained in the reference object that is used to
generate the filter for a linear optical correlator. In
more recent work some attempts have been made to
process jointly the information of the reference to-
gether with the input information.4'7 In particular,
Ersoy et al.5 '6 introduced the idea of NL matched
filtering and, specifically, phase extraction pattern
recognition.

The authors are with the Department of Electrical Engineering,
Technion-Israel Institute of Technology, Haifa 32000, Israel.

Received 12 February 1991.
0003-6935/92/081126-12$05.00/0.
© 1992 Optical Society of America.

This paper deals with the underlying concept of the
latter approach that is based on symmetric process-
ing. We perform correlations for pattern recognition
purposes by manipulating, solely, the phases of the
spectral distributions of the input and filter func-
tions. This work has some relation to the binary joint
transform correlator7 10 (JTC), although in the latter
no pure phase extraction is implemented.8 The binary
JTC is also much more sensitive to noise because of
the particular thresholding procedure used.8

The fundamental principle of this system architec-
ture is similar operations on the information that
produces the filter and the actual input distribution
during operation. The mathematical background is
given in Section 2 while the ideal system performance
is investigated by computer simulations in Section 4.
A laboratory setup is presented in Section 5 and
experimental results, demonstrating the superior per-
formance of this novel system, are described in
Section 6. The efficiency of the system is examined in
Section 7 while architectural modifications of the
original setup are presented in Section 8. Finally,
conclusions are presented in Section 9.

II. Basic Considerations
The theoretical implementation of the phase extrac-
tion correlator, as presented by Ersoy et al.,5'6 is
shown as a block diagram in Fig. 1. The input
complex amplitude distribution, q(x, y), is Fourier
transformed (FT) and operated on by a point nonlin-
earity, N,. The NL operation on a general function,

R(u, v) = IR(u, 0)Iexp[jp(u, v)],

is defined by

N1 {R(u, v) = R(u, )' exp[ljp(u, )]; 0 1 1. (1)
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C(xy) and when performing an IFT, at the correlation
plane, we obtain

C(x, y) = ,-51{G'(u, v)

= f f expJepQ(u, v)]explUpp(u, v)]exp[j21w(ux + vy)]dudv. (7)
1EL

Some interesting characteristics of the process are
investigated with the help of some specific cases.

(a) Single object in the input plane,

to which the POF is matched:

p(x,y) v

Fig. 1. Block diagram of the symmetric NL correlation: FT and
IFT denote the Fourier transform and its inverse, respectively;
q(x, y) and p(x, y) are the input and filter functions; N is a point
nonlinearity.

p(x,y) = a(-x, -y). (9)

Substitution of Eqs. (8) and (9) into Eqs. (2), (3), and
(7) yields

C(x, y) = 8(x + X0 , y + YO). (10)

This paper concentrates on I = 0, which means that
we extract the phase function from R (u, v). The filter
function, p(x, y), undergoes a transformation identi-
cal to the input function. The two results are multi-
plied and the product, G'(u, v), is inverse Fourier
transformed (IFT) to yield the correlation output
C(x, y). Since this correlator extracts the phase of the
input signal as well as of the filter function, we call it a
phase extraction correlator. We propose to implement
the FT and IFT optically by lenses, while the nonlin-
earity is performed by digital computer.

When the FT operation is performed on q(x, y) we
have

Q(u, v) = S7q(x, y)} = Ao f f q(x, y)exp[-j27r(ux + vy)]dxdy,

where AO is a constant, u = xflXf, v = yfIXf, X is the
light wavelength, f is the focal length of the FT lens,
and (x, y) and (xf, yf) are the spatial coordinates and
spatial frequency coordinates, respectively.

When the NL operation is applied to Eq. (2), with
1 = 0, it yields

Q '(U, v) = expli(pQ(u, v)]. (3)

In a similar way we have the FT of the filter function,

P(u, v) =Ylp(xy)}, (4)

and the phase extraction operation,

P'(u, v) = N,=,(P(u, v)}, (5)

which is in fact the conventional POF. When multiply-
ing Q'(u, v) by P'(u, v) we obtain

G'(u, v) = Q'(u, v)P'(u, v), (6)

This kind of response is identical to that of a theoreti-
cal inverse filter that is not constrained by practical
limitations."

(b) Two identical objects in the input plane to
which the POF is matched:

q(x, y) = a(x + xo, y + yo) + a(x + x,, y + y,),

p(x,y) = a(-x, -y).

(11)

(12)

Defining

59-a(x,y)l = A(u, v) = IA(u, v)Iexp[jU(u, v)] (13)

and substituting into the proper equations yield

Q(u, v) = IA(u, v) I exp[j(u, v)]

x exp[-j2'rr(ux, + vy,)] + exp[-j27r(ux, + vyl)]1.

By letting

2X2 = XO-XX 2 Y2 = Yo-Y1,

(14)

(15)

we obtain

Q(u, v) = 21A(u, v)Iexp~qi(u, v)]

X exp{-j2'rr[u(x, + x2) + v(y, + y2)]Jcos[2'rr(Ux2 + Vy2)], (16)

leading to

G'(u, v) = N,=,{Q(u, v)} P'(u, v)

= exp{j2'rr[u(x1 + X2) + V(y1 + y2)flsgntcos[2ir(ux2 + vy2)]1. (17)

By employing the Fourier series expansion

sgn{cos[27r(ux2 + vy2)]}= 4 j ak cos{[2k - 1][2ir(ux2 + vy2)]},

(18)
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where a, = (- 1)k-1/(2k - 1), after substitution of Eq.
(18) into Eq. (17) and with Eq. (7) we obtain

CX, y)

=- (8{[x + (x, + 2x,)]B[y + ( + 2y,)] + 8(x + xl)8(y + y)
'T

+ j a[b[x -x, -X 2 - (2k - 1)x218[Y Y1 Y2 - (2k - l)Y2]
0-2

+ B[X - X - X2 + (2k - 1)x2 ]8[y Y1 Y2 + (2k - 1)y2]1).
(19)

After returning to the original parameters [Eq. (15)]
we obtain

C(x, y)

2
=-(8(x + )8(y + O) + 8(x + x,)B(y + Y)

'Tr

+ 2 ak(8[x -x -X 2 - (2k - 1)X28[y -Y1 -Y2 - (2k - )y2]
0-2

+ 81x - X X2 + (2k - 1)x218[y - Y1 Y2 + (2k - 1)y2])).
(20)

Since we can measure only the intensity distribu-
tion in the correlation plane and since the square of
the sum of spatially separated delta functions is equal
to the sum of their squares, we obtain the intensity
distribution in the correlation plane in the form

Ic(x, y) (x + x,)(y + o) + 8(x + XJ)8( + )

+ aSax -x 1 -X 2 - (2k - 1)x218y Y1 Y2 - (2k - 1)Y2]

+ B[x - x - x2 + (2k - )x2]i[y - Y1 - Y2 + (2k - )y2]1. (21)

The various diffraction orders in relation (21) are
attenuated as a 2. Having a 2 = 1/9, a3

2 = 1/25, and
the general term a 2 = (2n - 1)-2, we observe that the
side peaks are quite low in magnitude. A typical plot
of relation (21) that is shown in Fig. 2 indicated that

0.

0.

(a)-Input (object) plane

5 -

0-I
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(b)-Intensity of the correlation plane

5-

0 1 . ~A A 
0 20 40 60 80 100 120 140 160 180

Fig. 2. (a) Input distribution; (b) intensity distribution over the
correlation plane.

only the first order, where the true correlation term
appears, contains considerable energy.

I11. Multiple Input Interference Effects

The examples of Section II indicate that some diffi-
culties may arise when more than a single object is
present in the input plane. Similar difficulties were
observed in the nonlinear binary JTC.9 l" For a compli-
cated input scene the real amplitude distribution of
its FT contains information about the separate ob-
jects as well as the linear phases determined by their
relative positions. Thus, vital information regarding
these positions may be lost by ignoring the intensity
distribution. The following example illustrates this
point. Assume a pattern of four point sources in the
input (spatial delta functions), equally spaced at
-3xo, -x0, x, 3x,. The FT of the input, q(x), yields a
sum of linear phases (for simplicity a one-dimensional
signal is assumed):

q(x) = 2 8[x - (2n - 5)xo]
n-1

4 sin(8rruxo)
9-qxJ= I exp(jxi27ru) =

i=i sin(2rux,)

(22)

(23)

In the limit, when we have an infinite number of
point sources equally spaced, l9{q(x)J turns into a
train of delta functions. Consequently, the amplitude
distribution is of utmost importance. Thus we see
that the phase information (the linear phases) that
contains the information concerning the location of
the objects in the input is coded into the amplitude
distribution as well. Hence, ignoring the amplitude
distribution may generate false correlation peaks or
suppress existing correlation peaks.

The above effect was observed in computer simula-
tions whenever identical input objects were arranged
in a line at regular intervals. However, when the
objects were arranged randomly, the information
regarding the positions of the objects were preserved
in the phase distribution and true correlation peaks
were obtained at the correct positions.

To conclude this topic it may be stated that manip-
ulation of only the phase information should generate
narrow correlation responses with no false peaks so
long as the amplitude distribution of the pattern is
not, to a large extent, modulated by the linear phase
due to the location of the individual patterns. Other-
wise the location information is coded into the ampli-
tude distribution as well (which is ignored) and,
consequently, a distorted correlation output may
result.

The above-described interference problem may be
alleviated by introducing an adaptive threshold of the
form

N4[R(u, v) expYliR(UV)] if IR(u, v) >t(u, v), (24)
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Fig. 3. Three input distributions used in the si

where t(u, v) is a spatially varying thr
example,

m [p(x, y)1 

p P guarantees that we follow the envelope of 9{p(x, y)|
to which the filter is matched. Hence low-amplitude,

P p noisy information of the subsidiary maxima gener-
ated by the sum of the linear phases that would
degrade performance is not amplified. This approach

P P is similar to the methods that have improved the POF
and binary POF"2 and motivated the development of

p p the ternary phase amplitude filter.3
(c) The FT of N identical objects with the one-

dimensional distribution a(x), equally spaced with
imulations. displacement 2xo, symmetrically placed with respect

to the origin, is

eshold. For N
2 sin(2iTNxo)u)

57T a(x - 2nx(,) = AMu i(Ixu
N sn2~(u

(26)

(25)

Clearly, Eq. (24) presents a selective mapping of the
complex domain to the complex domain. All the
vectors that are greater than or equal to t(u, v) are
mapped to the unit circle and to zero otherwise. This
is to be contrasted with Eq. (1) in which the original
nonlinear mapping, with = 0, is described, in which
all vectors to the unit circle are mapped. By choosing
the above adaptive threshold, we may achieve an
output that is totally independent of the specific input
function. This is so since for a single input object, to
which the filter is matched, the ideal output correla-
tion is always a delta function of the same energy
located at the object's center. Even for the case of
several similar objects in the input plane, the correla-
tion peaks are largely independent of the specific
arrangement of the objects in the input plane. The
above choice of threshold function, given by Eq. (25),

When the adaptive threshold, as given in Eqs. (24)
and (25), is performed and the result is multiplied by
the proper POF, we obtain the distribution

(27)

n\

n=-- a

where a is calculated by the relation

sin(urNxa) =

sin(Trxoa)
(28)

The FT of expression (27) yields a correlation plane
distribution of the form

(29)-- 8(X- 2nxo)sinc(T.

(a)

A Ai k

(b)

I �Ij�

Fig. 4. Correlation plane with a POF, matched to P, produced by a linear correlator: (a) Fig. 3(a) as the input, (b) Fig. 3(b) as the input.
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(a)

(b)

Fig. 5. Same as Fig. 4 but with the phase extraction correlator.

'I

Fig. 6. Same as Fig. 5(a) but with F as the filter function.

IV. Computer Simulations

Letters of size 10 x 10 pixels were generated and
placed in an input plane of size 128 x 128 pixels. The
FT of the input was taken when a fast Fourier
transform was used. The POF was also stored in
128 x 128 pixels. Finally, the correlation plane was
obtained by taking the FT of the product of the POF
and the result of the nonlinearity applied to the FT of
the input.

Various inputs used in the simulations are shown
in Fig. 3. The correlations obtained with a conven-
tional linear correlator employing a POF matched to
the letter P are shown in Fig. 4. The correlation plane
shown emulates exactly the correlation performed
optically with two consecutive FT's (not a FT fol-

Table 1. Normalized Merit Factors,

Linear Correlator NL Correlator
Various Metrics with POF with POF

Rejection 1.82 5.56
PCE 0.333 1

'Derived from the simulation results given by Figs. 4(a) and 5(a)
where rejection = peak corresponding to P/peak corresponding to
F; PCE = correlation peak intensity/,f #.I C (x, y) I'dxdy.

lowed by an IFT). The correlations obtained with the
phase extraction correlator described by Eqs. (2)-(7)
with the filter matched to the letter P are shown in
Fig. 5 and with the filter matched to F are shown in
Fig. 6. Note that the discrimination against the
letters E and P when F is used as the filter is poor
since, in our choice of the letters E and P, both
contain the letter F. Various metrics relating to Figs.
4(a) and 5(a) are grouped in Table I and compared
with the conventional POF. Peak-to-correlation en-
ergy (PCE) in the table is a parameter measuring the
sharpness of the peak. 4

Table 1. Correlation Response (In Arbitrary Units) at ±x, ±bx to Four
Identical Objects Centered at -bxe, -xe, x,, bxe with the Phase Extraction

Pattern Recognition Systema

b =2 =3 =4 =10

Correlation
Cb(±xO) 1.36 0.65 1.057 1.0083
ICb(±bxo)I 0.68 1.26 0.944 0.992
| Cb( bxo)ICb (x0) 2 0.25 3.75 0.89 0.99

'C8(x_) is the correlation response C at x when b is as given in the
table Cb(bo) is the correlation response C at bx0 when b is as given
in the table.
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(a)

Ilj

(b)

Fig. 7. Figure 3(c) as the input for correlation with P: (a) conventional POF, (b) phase extraction correlator.

As we mentioned in Section III, when the objects
are arranged in some orderly pattern the NL correla-
tor does not perform well. A careful analytical exami-
nation of the height of the correlation peaks gener-
ated by the phase extraction correlator, for the
identical four-object case, as a function of displace-
ment, produced the results presented in Table II. The
ratio between the true correlation peaks, ICb(bx,)l
Cb(xO) 2 varies erratically the closer the objects' ar-
rangement is to mimic a pattern. As the objects'
arrangement leaves the pattern arrangement (in
Table II this corresponds to b = 3 and to a smaller
degree b = 2) toward a disordered arrangement (b = 4,
10), the true correlation peaks settle down to a
similar value, i.e., the ratio I Cb(bxO)ICb(xo) 12 is 1.

Consider the case shown in Fig. 3(b) (four equally
spaced identical objects arranged in two lines, which
would correspond to b = 3 in Table II). The corre-
sponding output correlation planes are shown in Fig.
4(b) for the linear POF and in Fig. 5(b) for the phase
extraction correlator. It is evident from Fig. 5(b) that
the heights of the peaks at the true positions of the
objects are not of the same height. Moreover, spuri-
ous peaks are generated whose height exceeds the
height of the true position peaks. This problem is not

I

encountered when the letters are arranged in a
disordered manner as in Fig. 3(c). The correlation
response for this case is good as is obvious from Fig.
7(b). The variation in the intensity of the true peak
heights is < 10% and the false peak heights are small.

Figure 8 shows a typical result obtained with a NL
adaptive correlator when the threshold of Eq. (25)
was used. Although the problem of true peak variance
is not completely solved, it is dramatically mitigated
since the subsidiary peaks (false position peaks) have
been drastically suppressed such that the largest
subsidiary false peak is <25% of the minimal true
location peak. This may be clearly seen in Fig. 8.

V. Electro-Optical Architecture

The electro-optical system that implemented the idea
of Fig. 1 is shown in Fig. 9. Note that this architecture
closely follows Eqs. (2)-(7) that describe Fig. 1. The
operation is as follows:

A transparency containing the filter functionp(x,y)
is placed at the input plane in the lower channel of
Fig. 9. Lens L, of focal length f performs a FT to the
camera plane. Subsequently it is superposed with a
plane wave of amplitude A and at an angle 0. The

k

Fig. 8. Output correlation plane with an adaptive NL correlator with Fig. 3(b) as the input.
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or, i a series expansion, as

2 (.-i)
T'(u, ) = -(-1) 2 expjjn[2rou + (Fp(u, v)]).

n=-.. dd nt
q(x,y) I

4 f -* 4 f

/A/

p(x,y) Li t

= -*- BS

4 f _ . f _

FT {f "}
CA4 f_ -4 f -

Fig. 9. Electro-optical implementation of Fig. 1.

angle is set such that the wave vector is parallel to the
u-z plane.

The interference pattern recorded by the camera is
given by

T(u, v) = IA + IP(u, 0) 12

+ 21A I IP(u, v)l cos[2irctu + 4p(u, v)], (30)

(35)

The FT of Eq. (35) yields an infinite number of
diffraction orders (harmonics) along the x axis. The
first orders, centered at (X\fa, 0), correspond to the
FT of exp[±j(Dp(u, v)], respectively, as shown in Fig.
10(a). This completes the preparation stage-the
learning process.

To operate the system for its pattern recognition
task after the learning procedure is completed, a

Y

4- f a

(a)

y

where

sin(O)
aU = a P,

(Dp(u, v) = arg[P(u, v)}.

(31)

FT{d '-}
(32)

The intensity distribution of P(u, v) is also recorded
separately for the subsequent thresholding by closing
shutter SH in Fig. 9. A thresholding operation,

T(u, v) = 1 if T(u, v) < IA 12 + P(u, V)12
1 otherwise (33)

is performed by the computer. This thresholding
operation can also be written as

T'(u, v) = sgn(cos[2rau + ctp(u, v)]j (34)

RI6'~ Xfcc

4 Xfa

+ P 4

FT{e j'-* FT~e i'o}
FT{e'i¢}* FT{d0}

+

4--% f a_ 
X

. FTIPPI

upV

FTf g j'-}

(b)

Fig. 10. (a) The FT of T'(u, v). (b) FT of W'(u, v), the output
correlation plane. The orders where the desired correlations were
obtained are marked.
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similar process is repeated for the input function
q(x, y). This is implemented in the upper channel of
Fig. 9 except for the fact that the angle of the plane
wave is altered such that the wave vector is parallel to
the v-z plane, i.e., perpendicular to the wave vector
that was used to generate the filter. Hence we obtain

SU'(, u) = sgn~cos[2'rrcv + 4DQ(U, v)]}. (36)

Again, Eq. (36) may be rewritten as

2 (n-1)
S'(u, v) = -(-1) 2 exUn[2rrotv + (DQ(u, v)]}.

(37)

The FT of Eq. (37) yields an infinite number of
diffraction orders (harmonics) along the y axis. The
first orders, centered at (0, ± Xfx), correspond to the
FT of exp[±jDG(u, v)], respectively.

After multiplying S'(u, v) by T'(u, v) we obtain
W'(u, v), which is displayed on the spatial light
modulator. W'(u, v), which is a bipolar grating, is
written on the magneto-optic spatial light modulator
in a method proposed by Psaltis et al.'5 The desired
cross correlation is obtained, after performing an
optical FT, either at the order (1, 1) or at the order
(-1, - 1). The only relevant terms from W'(u, v) are

4 exp{-j[2wrau + 2 7rov + cDp(u, v) + FQ(u, v)1)

or

4
-2 exp{+j[2irau + 2

iTrov + 4Dp(u, v) + 'I'Q(U, v)])

and their FT results in the cross correlation. This is
shown in Fig. 10(b).

The actual experiment in the laboratory was per-
formed in a single optical channel (Fig. 11) in three
time cycles. To obtain the two different wave vectors

at
iSH

Fig. 11. The 2f laboratory setup executing the same process as in
Fig. 9 in three cycles.

of the plane wave the mirror was properly tilted for
the learning and recognition cycles.

VI. Laboratory Experiments

When the electro-optical system described in Section
5 was used several experiments were performed. The
system was controlled by an IBM AT-compatible
computer supplemented with a CUE-2 package.6

In one of the experiments a filter was prepared to
match the letter P. The binarized interference pat-
tern of the filter, T'(u, v) [Eq. (35)], is shown in Fig.
12(a). The binarized interference pattern of the input
(also a single letter P), S '(u, v), which is given by Eq.
(37), is shown in Fig. 12(b). Note that the fringes in
Fig. 12(b) are perpendicular to those of Fig. 12(a), as
required. The product of S'(u, v) and T'(u, v),
W'(u, v), is given in Fig. 12(c). The transverse cross
section of the correlation peak, obtained by a FT of
Fig. 12(c), is given in Fig. 12(d).

By using the same filter but with the input of Fig.
3(a) we obtained a W' as shown in Fig. 13(a). The FT
of W' is shown in Fig. 13(b). In both Figs. 13 and 14
the correlation areas [which is the region of the (1, 1)
order of Fig. 10(b)] are surrounded by a white square.
A strong peak at the position of the correlation with
the letter P is clearly observed while the letters F, 0,
and E are dramatically rejected, as required. This is
made even clearer in Fig. 13(c) where a cross section
of the relevant correlation peaks of P and F is shown.
Note the excellent agreement with the simulation
results [Fig. 5(a)].

Finally, by using the same input as for Fig. 13, we
generated W'(u, v) with the filter matched to F; this is
shown in Fig. 14(a). The FT of W' is shown in Fig.
14(b). We observe strong peaks at the positions that
correspond to the letters P, F, and E as predicted in
the simulations (Fig. 6).

We also investigated the performance of the correla-
tor when the input to the system is an orderly pattern
of equally spaced objects as shown in Fig. 4(b). In this
case, as shown above, we expect the true peaks not to
be of the same height (as shown in Table II) and false
correlation peaks to be generated that are higher than
the true correlation peaks [see Fig. 5(b)]. Not with-
standing this, in the laboratory, the correlator per-
formed well for this case, i.e., it recognized all eight
P's present in the input at the correct positions and
with low sidelobes. This is clearly shown in Fig. 15(a).
Note that the peaks are approximately of the same
height, as is clearly demonstrated in Fig. 15(b). The
reason for this appears to be the noise and aberra-
tions present in the actual optical system that cor-
rupts the ordering. Hence the magnitude of the false
peaks observed in the ideal simulations is substan-
tially reduced.

VII. Efficiency Considerations

One interesting and useful attribute of the phase
extraction correlator is that the output correlation
peak is independent of the particular input function.
For a single object input to which the filter is matched
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Fig. 12. (a) Binarized interference pattern of the POF matched to the letter P, T'(u, v).
(also a single letter P) S '(a, v). (c) W', the product of S' and T'. (d) FT of W' with the
peak.

(d)

(b) Binarized interference pattern of the input
e transverse cross section of the (1, 1) correlation

the output correlation peak is always a delta function
having the same energy. By defining the optical
efficiency as the ratio between the integrated inten-
sity of the (1, 1) order (correlation spot) and the
integrated intensity in the correlation plane (distrib-
uted in all the diffraction orders), we achieve, theoret-
ically, the efficiency

T1

(S)4

= (1.03 x s')%,

E mE2dd 22n mrr

where

2 if the thresholding operation results are

bipolar (1 and -1 ) as in this paper,
S = 1 if the thresholding operation results are (38)

unipolar (1 and 0).

It is clear that the efficiency of the bipolar phase
extraction correlator is much higher than the unipo-
lar phase extraction correlator that we presented
elsewhere. 7

Remembering that the correlation peak with a
single object as an input is located at one single point

(8-function output) means that the effective efficiency
of the proposed correlator is even higher compared to
other conventional correlators. This efficiency is also
compared to the efficiency of an inverse filter in a
linear system. Although the efficiency of a linear
inverse filter is function dependent, we may still
evaluate it by using the evaluation of Horner" based
on typical objects and dimensions. According to the
results of Horner the efficiency of the linear correla-
tor is 0.01% with a direct, nongrating filter when an
inverse filter is used. When taking into account that
we need a binary computer-generated hologram for
the filter implementation means that the efficiency is
further reduced by another order of magnitude since
the efficiency of computer-generated holograms is
< 10%.'8 By comparing this to the efficiency of 16% of
our bipolar correlator [s = 2 in Eq. (38)] we see that
the improvement in the optical efficiency put forward
by our NL system is dramatic. It should, however, be
noted that the 16% efficiency is a theoretical efficiency
if we assume that a uniform grating is generated in
the frequency plane. This is not practical because of
the noise present in the system as is obvious from
Figs. 12-14.

It should also be noted that the output correlation
plane is illumination invariant, i.e., independent of
illumination on the object. It is also evident that the
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Fig. 14. As in Fig. 13 but with F as the filter.

appreciated that, because of the symmetry of the
system and the type of nonlinearity employed as
given by Eq. (1), we may simplify Fig. 1 to Fig. 16.
This is so since

NIfQ(u, v)} = Q'(u, v) = I Q(u, v) 'explIypQ(u, v)];

N 1 {P(u, v)1 = P'(u, v) = IP(u, ) II exp[jUpp(u, v)]; (39)

therefore

N 1{Q(u, v)1N1{P(u, v)} = N1{Q(u, v)P(u, v)}. (40)

(C)

Fig. 13. (a) W' with Fig. 3(a) as the input and P as the filter. (b)
The FT of W' (the dimensions of the added white border are
approximately the size of the input plane). (c) Cross section of the
section corresponding to the letters P and F in (b).

system is shift invariant in that shifting the input
plane, as a whole, will cause a corresponding shift in
the output correlation plane. However, as in the JTC,
the height of the correlation peaks is dependent on
the number of objects in the input.

Vil. Architectural Modifications

The phase extraction correlation system is shown
diagrammatically in Fig. 1. It should however be

Hence the output correlation plane of Fig. 1 is
identical to that of Fig. 16 if the same input and filter
functions are used for both figures.

Also, we are not confined to use a specific filter for
multiplication by the FT of the input. In fact we may
use any filter (having any amplitude and phase
distribution). Thus, the NL operation may be per-
formed prior or subsequent to the actual multiplica-
tion in the frequency domain, i.e., we may perform
pre- or post-NL processing in our system without
alteration of the results. As a matter of fact the NL
operations may be performed on correlation results
obtained from a linear system if the amplitude and
phase distribution of the output of the linear correla-
tion system are available. In other words, a true
postprocessing system may be realized without any
degradation in system performance.
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(b)

Fig. 15. (a) FT of W' obtained with Fig.3(b) as the input and P as
the filter. (b) Cross section of (a).

IX. Conclusions

We have demonstrated the feasibility of achieving
electro-optical phase extraction pattern recognition
and have observed the various advantages of such a

q(x,y) Q(u,v)

INPUT CHANATUr

G' (u,v) C(x,y)

V13LJ

P(u,v) g

OUTPUT

CHANNEL

Fig. 16. Alternative realization of the NL correlator of Fig. 1.

system. Although the system is somewhat more
complex than a linear correlator, the hybrid system is
not difficult to build. Also, since both the input and
the filter are processed in quasi-real time and in the
same optical system, the optical distortions are ac-
counted for. Moreover, as all our inputs are binary
(±1), the input may also be displayed on a binary
spatial light modulator. Hence it may be possible to
convert the 4f correlator to a compact 2f correlator.
Despite bearing some problematic features, the worst
of which is probably the sensitivity to a periodic
arrangement of patterns, the phase extraction corre-
lator demonstrated considerable success. As pre-
sented, the problematic features may be alleviated, if
not totally mitigated, by suitable adaptation algo-
rithms that are currently under further investiga-
tion.

In summary, we have demonstrated a phase extrac-
tion correlator with inverse filterlike performance,
i.e.,

High discrimination: Supported by Table I and
simulations given in Section IV. Also it should be
appreciated that because of the NL operation the high
spectral frequencies are amplified. Since the differ-
ences between objects lie in the high frequencies, in
general, we expected the phase extraction correlator
to give good discrimination because of its intrinsic
amplification attribute.

Sharp correlation peaks: We showed that for ob-
ject(s) to which the filter is matched [see Eqs. (10) and
(20)] the correlation peaks are delta functions-the
sharpest possible functions.

High energy transfer: Clearly, from Eq. (38) the
energy transfer is very high (16% for s = 2) compared
with that of other correlators having the same peak
sharpness, e.g., the inverse filter. This means that we
should be able to use a low-powered laser in such a
correlation system.

This work was performed within the Technion
Advanced Opto-Electronics Center established by the
American Technion Society, New York.
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