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General theorem of spatial coherence:
application to three-dimensional imaging
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Three-dimensional imaging of incoherent light sources by the Michelson stellar interferometer is considered.
When the interferometer’s pinholes are arranged properly, its output result is equivalent to a two-dimensional
Fourier hologram that stores information about the source object’s three-dimensional intensity distribution.
© 1996 Optical Society of America.
1. INTRODUCTION

The Michelson stellar interferometer1 (MSI) (also known
as long-baseline interferometer) is used for measuring the
shape of planar objects that emit quasi-monochromatic,
spatially incoherent light. Its principle of operation is
based on recording interference patterns in the far field
obtained by a two-pinhole Young interference configura-
tion. The fringes’ visibility and phase versus the separa-
tion between the pinholes are equal to the complex degree
of coherence in the plane of the pinholes. According to
the Van Cittert–Zernike theorem, the complex degree of
coherence is proportional to the Fourier transform of the
source’s (planar) intensity distribution.2 Thus measur-
ing the complex degree of coherence versus pinhole sepa-
ration and performing inverse Fourier transformation
yield the image distribution of the source. The resolution
of this imaging method is proportional to the maximum
distance between the pinholes. Thus the resolution of an
MSI with a maximum pinhole separation D is approxi-
mately equal to the resolution of an ordinary imaging sys-
tem with a full aperture of diameter D. This resolution
property is the main advantage of the MSI as an imaging
tool.
On the basis of the three-dimensional (3-D) paraxial

generalization to the spatial coherence theorem that we
derive here, we propose a method to measure the 3-D in-
tensity distribution of source objects by the MSI, and we
discuss the measurement limitations. We show that the
MSI output result is equivalent to a two-dimensional
(2-D) Fourier hologram that stores, in the form of spatial
modulation, information about the source object’s 3-D in-
tensity distribution.

2. THEORY
A schematic diagram of the proposed MSI is shown in Fig.
1. A light source in the coordinate system (xs , ys , zs) il-
luminates from the far field two pinholes located in the
coordinate system (x, y, z). Without loss of generality,
we assume that z, zs are on the same line. A volume el-
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ement source dVm , with an amplitude Am(t), located a
distance R1 from one pinhole and R2 from the other pin-
hole, illuminates them with spherical waves with a com-
plex amplitude proportional to2 Am(t 2 Ri /c)exp@2jk(ct
2 Ri)]/Ri , where i 5 1, 2, c is the velocity of light, k
5 2p/l, and l is the average wavelength. The complex
degree of coherence, defined by the normalized time aver-
age of the product of the fields E1 , E2* at the pinholes’
points, sampled at the same time, is
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where I0 5 * Is( r̄ s)d
3rs and Is( r̄s) is the intensity per

unit volume of the source; i.e., Is( r̄m)dVm
5 ^Am(t)Am* (t)&. For each spherical wave we approxi-
mate the distance Ri in the denominator by the average
distance R. In this derivation we use the quasi-
monochromatic assumption2 [i.e., ^Am(t 2 R1,m /c)Am* (t
2 R2,m /c)& 5 uAmu2] and the complete incoherence of the
source [i.e., ^Am(t)An* (t)& 5 dmnuAmu2]. In terms of the
source’s spectrum the quasi-monochromatic assumption
is expressed by the condition Dv ! cR/Drmax

2 , where Dv is
the source’s spectral bandwidth and Drmax is the maxi-
mum separation between the pinholes.
Under the far-field assumption, that R is much larger

than the maximum size of the source, and the paraxial as-
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sumption, that R is much larger than the maximum sepa-
ration between the pinholes, (R1 2 R2) is approximated
as

R1 2 R2 5 @~R 1 z1 2 zs!
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where â 5 (a1 1 a2)/2, Da 5 a1 2 a2, and a stands for
x, y, z. Substituting Eq. (2) into Eq. (1) yields

m~ r̄1 , r̄2! 5
exp~ jk@Dz 1 ~ x̂Dx 1 ŷDy !/R# !
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Equation (3) is a generalization of the Van Cittert–
Zernike theorem to the case of correlation between two
points at the paraxial zone that are illuminated by a 3-D
source from the far field. We refer to it as the 3-D
paraxial generalization to the spatial coherence theorem.
Unlike a previous generalization,3 in which an observa-
tion from all 3-D directions is considered, ours is valid
only for an observation from the paraxial regime. Also,
we consider the two last phase terms in Eq. (3), which
were apparently neglected in Ref. 3.
The upper and lower pinholes, shown in Fig. 1, illumi-
nate the lens with spherical waves emanating from points
1 and 2, respectively, resulting in two plane waves at the
back focal plane at angles w and 2w to the lens’s axis.
When the contributions of all the quasi-monochromatic
incoherent source points are summed, the intensity distri-
bution in the back focal plane is

I~ y0! 5 E Is~ r̄ s!U 1
R1

exp@ jk~R1 1 y0 sin w!#
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1
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where m ( r̄1 , r̄2) is the complex visibility function of the
interference grating I( y0), and it is equal to the complex
degree of coherence2 given in Eqs. (1) and (3). y0 is the
transverse coordinate of the back focal plane, and we ne-
glect the effect of the finite pinholes’ apertures, assuming
for simplicity that each of them is a mathematical point.
An MSI geometry that simplifies Eq. (3) is one where

the pinholes’ center of gravity is zero (i.e., x̂ 5 ŷ 5 ẑ
5 0). In this case m becomes a function of the coordi-
nates (Dx, Dy, Dz):
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where

Î s~xs , ys! 5 E Is~xs , ys , zs!dzs .
Fig. 1. Schematic system of the MSI for 3-D imaging.
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This expression for m(Dx, Dy, Dz) is formally analogous
to that describing coherent diffraction in a spherical lens
system4 with focal length R when an aperture with a field
profile Î s(xs , ys) is displayed in the front focal plane.
Note that the radial intensity distribution of the source
can be reconstructed from measuring the coherence along
the z axis only. This is because m(0, 0, Dz) is a Fourier
transform of Î s(uxs2 1 ys

2u).
Another simplification results if the pinholes’ axis is

perpendicular to the z axis (Dz 5 0): We fix one pinhole
at the origin, and the pinholes are again illuminated by a
3-D source. In this case m becomes a 2-D function given
by

m~x, y ! 5 C0 E Is~ r̄ s!expH 2j2p

lR Fxxs 1 yys

1
~x2 1 y2!zs

2R G J d3r̄ s , (6)

where C0 5 exp@ jk(x2 1 y2)/2R#/I0. This expression for
m(x, y) is also formally analogous to that describing a co-
herent diffraction in a spherical lens system.5 Suppose
that a 3-D object with a profile equal to Is( r̄s) is located
around the front focal plane (zs 5 0) of a lens with focal
length R. When this object is illuminated by a plane
wave propagating along z, the complex amplitude at the
far (back) focal plane diffracted from this object has a dis-
tribution proportional to m(x, y) given by Eq. (6). Note
that the physics is different in this case, since this time
both Is( r̄s) and m(x, y) indicate coherent-field distribu-
tions. The complex field m(x, y) in this case can be re-
corded in a 2-D hologram by interfering it with a second,
coherent, reference, usually a plane wave at the recording
plane. In our incoherent case the complex function
m(x, y) is recorded without any reference. The experi-
mental recording of the complex function m(x, y) can be
accomplished as follows: The pinholes’ plane of the
MSI shown in Fig. 1 is arranged to be perpendicular to
the z axis. One pinhole is fixed at the origin, while the
other is moved in a Cartesian grid. At each pinhole po-
sition (x, y) a diffraction grating is generated in the MSI
output. It should be noted that the location, spatial fre-
quency, and orientation of these gratings depend on the
geometry of the MSI and not on that of the source distri-
bution. Therefore the only two parameters extracted
from each grating (for each location of the moving pin-
hole) are its visibility and its phase. Completing the pro-
cess along the full grid yields a sampled version of
m(x, y).
A reconstructed Fourier hologram field m (x, y) of a co-

herent field Is( r̄s) can yield the (inverted) original field
Is( r̄s) by propagating again through a lens to the vicinity
of its back focal plane. On the basis of this analogy we
achieve the reconstruction of the incoherent 3-D source by
computing ur according to

ur~x0 , y0 , z0! 5 E E m~x, y !expH j2p

l Fxx0 1 yy0
L1

1
z0
2L2

2 ~x2 1 y2!G J dxdy, (7)
where L1 , L2 are reconstruction constants. In the case
of an optical reconstruction, m (x, y) is placed in the front
focal plane of a lens with focal length f. It is straightfor-
ward to show that Eq. (7) describes the complex-field dis-
tribution around the back focal plane (x0 , y0 , z0 5 0) if
L1 5 L2 5 2f, and ur is multiplied by a linear phase fac-
tor of z0 , which is eliminated by any intensity detector.
In order to see that the original object is indeed recon-

structed by the process described by Eq. (7), let us de-
scribe the 3-D source as a discrete collection of slices each
of which has a thickness of a resolution element Dzs,min .
Equation (6) is rewritten for this case as follows:
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Substitute m (x, y), given by Eq. (8), into Eq. (7) and solve
for the field ur at the plane z̄0 5 z̄sL2

2/R2, where z̄s indi-
cates some arbitrary transverse plane of the original 3-D
object space. The reconstructed pattern at this plane is
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The first term in Eq. (9) is the scaled reconstruction of the
original object at the plane zs 5 z̄s 5 R2 z̄0 /L2

2. The
second term is the unfocused distribution obtained from
all the object points that are not on the plane zs 5 z̄s .
Repeating the procedure of Eq. (9) for each transverse
plane z0 , the original pattern of the corresponding plane,
zs 5 R2z0 /L2

2, is focused. The unfocused term in Eq.
(9), which involves the summation, prevents us from ob-
taining a perfect reconstruction of the original object
Is( r̄s). We should note, however, from the rigorous holo-
graphic analogy of Eq. (6), that the field ur(x0 , y0 , z0) is
that which would be seen by an observer when the 3-D ob-
ject was illuminated by a coherent field. This is the same
field that results from a reconstruction of a hologram of
Is( r̄s), which is the basis of holographic 3-D imaging. In
this sense we can claim to image the 3-D object Is( r̄s).
The magnification of this imaging process is L1/R in

the transverse dimension and (L2/R)
2 along the z axis.

The minimum depth distance that can be resolved in this
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Fig. 2. Computer simulation of the MSI. The magnitude (a) and the phase (b) of the 2-D complex visibility function were calculated
from the interference MSI’s gratings. (c)–(e) The reconstruction of the hologram shown in (a) and (b) at three different planes along the
z axis. In each plane only one abbreviation is in focus, indicating its original location in the object space.
case is Dzs,min ' 2lR2/rmax
2 , where rmax 5 (xmax

2 1 ymax
2 )1/2

and (xmax , ymax) are the maximum distances reached by
the moving pinhole. On the other hand, the minimum
planar distance that can be resolved in the target is
(D xs,min , D ys,min) ' (lR/xmax , lR/ymax). Assuming that
the observed object is limited by a box with sides of
length (XS , YS , ZS), the step size of the pinhole
(d xmax , d ymax) should be no larger than lR2@(xmaxZs
1 RXs)

21, ( ymaxZs 1 RYs)
21], in order for the whole ob-

ject to enter into the MSI’s field of view.

3. SIMULATION RESULTS
As an example we take three abbreviations as our quasi-
monochromatic incoherent homogeneous light source.
Each of the three abbreviations is positioned at a different
location along the zs axis, and is composed from an inco-
herent collection of point sources of spherical waves. Our
simulation is based on the first two lines of Eq. (4) for cal-
culating the degree of coherence and on Eq. (7), for calcu-
lating the reconstructed pattern. Without any further
approximation, the following results are also used as a
verification of Eq. (6).
We simulated the MSI operation with the parameters

R 5 105 m, l 5 10 mm, (xmax , ymax) 5 (192, 192) m,
(XS , YS , ZS) 5 (0.2, 0.2, 22) m, (d xmax , d ymax) 5
(2, 2) m. The results are shown in Fig. 2. In our simu-
lated MSI we assume that the gratings are all one dimen-
sional, with the same frequency and orientation. The
only important information contained in this collection of
gratings is their visibility and phase. These two param-
eters are measured in each grating, and the resulting 2-D
visibility and phase distribution are shown in Figs. 2(a)
and 2(b), respectively. Each value (i, j) in this matrix
indicates the visibility, Fig. 2(a), and phase, Fig. 2(b), of
the grating obtained when the moving pinhole is in the
(i, j) location. Finally, the reconstruction results in
three planes along the z0 axis are shown in Figs. 2(c)–
2(e). These results are obtained by calculating Eq. (7) for
three different values of z0 . At each plane a different ab-
breviation is focused; thus reconstruction of the object in
the 3-D space is possible.

4. CONCLUSION
We have proposed and demonstrated a new method of
synthetic-aperture incoherent holography. With this
method we are able to measure the complex visibility
function containing 3-D information about the incoherent
source. This 3-D distribution can be reconstructed in the
same sense as a coherently recorded hologram. The sys-
tem has a synthetic-aperture width equal to double the
maximum separation between the pinholes, whereas the
actual aperture consists only of the apertures of the two
pinholes. This property gives to the proposed method an
advantage over other incoherently recorded holograms.6

ACKNOWLEDGMENTS
This research was supported by the U.S. Army Research
Office and the Advanced Research Projects Agency.



J. Rosen and A. Yariv Vol. 13, No. 10 /October 1996 /J. Opt. Soc. Am. A 2095
REFERENCES
1. W. J. Tango and R. Q. Twiss, ‘‘Michelson stellar interferom-

etry,’’ in Progress in Optics, E. Wolf, ed. (Elsevier, New
York, 1980), Vol. 17, pp. 239–277.

2. M. Born and E. Wolf, Principles of Optics, 4th ed. (Perga-
mon, Oxford, 1970), Chap. 10, p. 491; J. W. Goodman, Sta-
tistical Optics, 1st ed. (Wiley, New York, 1985), Chap. 5,
p. 157.

3. W. H. Carter and E. Wolf, ‘‘Correlation theory of wavefield-
sgenerated by fluctuating, three-dimensional, primary, sca-
lar sources,’’ Opt. Acta 28, 227–244 (1981).
4. C. W. McCutchen, ‘‘Generalized source and the Van
Cittert–Zernike theorem: a study of the spatial coherence
required for interferometry,’’ J. Opt. Soc. Am. 56, 727–733
(1966); J. Rosen and A. Yariv, ‘‘Longitudinal partial coher-
ence of optical radiation,’’ Opt. Commun. 117, 8–12 (1995).

5. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadel-
phia, Ca., 1991), App. E, p. 705.

6. A. W. Lohmann, ‘‘Wavefront reconstruction for incoherent
objects,’’ J. Opt. Soc. Am. 55, 1555–1556 (1965); G. Sirat
and D. Psaltis, ‘‘Conoscopic holography,’’ Opt. Lett. 10, 4–6
(1985).


