
430 J. Opt. Soc. Am. A/Vol. 15, No. 2 /February 1998 Joseph Rosen
Three-dimensional electro-optical correlation
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Electro-optical implementation of a three-dimensional (3-D) spatial correlation is proposed. A 3-D scene of
objects, seen from the paraxial zone, is correlated with a reference object. As an example of application, we
describe a 3-D joint transform correlator that is capable of recognizing targets in the 3-D space. © 1998 Op-
tical Society of America [S0740-3232(98)02102-4]
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1. INTRODUCTION
A correlation is essential in signal processing in general,
and in optical image processing in particular. A spatial
correlation is employed extensively in various schemes of
edge enhancement,1 pattern recognition,2 target
tracking,3 and more. In most of these schemes the func-
tions involved are at most two dimensional (2-D). How-
ever, our real spatial world is three dimensional (3-D),
and in some applications one needs to process 3-D objects
in their natural 3-D environment. Pattern recognition
and target tracking in the 3-D space are examples of ap-
plications that can benefit by use of the 3-D correlation.
In these applications one employs the information ob-
tained from the 3-D shape of the target and learns its lo-
cation in the 3-D space. In this work we describe a pro-
cess of the 3-D correlation between two 3-D real-world
functions. This correlation is demonstrated on a 3-D
joint transform correlator (JTC) for the application of pat-
tern recognition.

A correlation of any dimension can be expressed by two
successive Fourier transforms (FT’s). Therefore, we first
propose a method to perform 3-D FT of a real-world 3-D
function. The idea behind this 3-D FT is inspired by the
work of Rosen and Yariv.4 They have proposed a method
of receiving a 3-D FT of the intensity distribution of an
incoherent radiation source by measuring the far-field
3-D degree of coherence. In the present method the 3-D
FT is composed from a series of 2-D FT’s, each of which is
performed on a 2-D projection of the 3-D input function,
observed by a camera from a different point of view. The
3-D object is observed from various points of view distrib-
uted on a finite transverse plane located far from the ob-
ject. It is assumed that the field of view is wider than the
transverse dimension of the input function and that the
depth of focus of the camera is longer than the longitudi-
nal dimension of the input function.

2. THREE-DIMENSIONAL FOURIER
TRANSFORM
A 3-D input function o(xs , ys , zs), shown in Fig. 1, is lo-
cated in the coordinate system (xs , ys , zs), where P1 is
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the transverse plane zs 5 0. A camera observes plane P1
through an imaging lens located a distance L from plane
P1 . The lens and the camera are transversely displaced
a distance (Dx , Dy) from the zs axis. To express the re-
lation between the 3-D input function and the distribu-
tion on the Fourier plane, let us first look at a single point
(xs8 , ys8 , zs8) from the entire input object. The observed
point is imaged on plane P2 at point (xi , yi). Assuming
that plane P1 is imaged with a magnification factor M, we
can calculate the location of the observed point (xi , yi) as
a function of its location in the object space and the
amount of the camera’s displacement (Dx , Dy). Accord-
ing to Fig. 1, the location of the imaged point on plane P2
is

xi 5
M~Dx 1 xs8!

1 2 zs8/L

yi 5
M~Dy 1 ys8!

1 2 zs8/L
. (1)

Assuming that L @ zs,max8 , we approximate (xi , yi), by
taking only the first two terms of the binomial expansion
of (1 2 zs8/L)21, as follows

xi > M~Dx 1 xs8 1 zs8Dx /L 1 zs8xs8/L !,

yi > M~Dy 1 ys8 1 zs8Dy /L 1 zs8ys8/L !. (2)

Each imaged point (xi , yi) is Fourier transformed to a
linear phase function exp@i2pk (xiu 1 yiv)#, where (u, v)
are the coordinates of the 2-D Fourier plane and k is a
constant. This FT can be done optically by displaying
the imaged point on an electrical-addressed spatial light
modulator. The spatial light modulator is located in the
front focal plane of a spherical lens and illuminated by a
plane wave. Thus a 2-D FT of the image on the spatial
light modulator is obtained on the lens’s back focal plane.
In this case k 5 1 /lf, where f is the lens’s focal length
and l is the wavelength of the plane wave. Alterna-
tively, the FT can be done by an electronic computer that
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Fig. 1. Illustration of the imaging system for calculating Eq. (1).
receives the image directly from the camera. We obtain
the overall distribution on the Fourier plane for a given
displacement (Dx , Dy) by integrating over the linear
phases contributed by all the 3-D object points, as follows

O~u, v, Dx , Dy! 5 EEE o~xs , ys , zs!

3 exp@i2pk~xiu 1 yiv !#dxsdysdzs .

(3)

At this point we assume that L @ 2pMkumaxDzsDxs
and L @ 2pMkvmaxDzsDys , where (Dxs , Dys , Dzs) de-
note the size of the input function, and (umax , vmax) are
the maximum values of the Fourier plane. In these as-
sumptions we require that the maximum phase change
contributed by the fourth terms of Eqs. (2) be much less
than 1 rad. For a given input object, the validity of these
assumptions depends on the system parameters, and
therefore we can always design the system to satisfy
these assumptions. Following the assumptions, the
fourth terms in the right-hand side of Eqs. (2) can be ne-
glected, and we approximate the location of each image
point as

xi > M@Dx 1 xs8 1 zs8Dx /L#,

yi > M@Dy 1 ys8 1 zs8Dy /L#. (4)

Substituting Eqs. (4) into Eq. (3) yields
O~u, v, Dx , Dy! 5 exp@i2pMk~Dxu 1 Dyv !#

3 EEE o~xs , ys , zs!

3 exp$i2pMk@xsu 1 ysv

1 ~zs /L !~Dxu 1 Dyv !#%dxsdysdzs .

(5)

Eq. (5) is a 3-D FT multiplied by a linear phase func-
tion, which transforms an object function o(xs , ys , zs)
into a 3-D spatial-frequency function O(vx , vy , vz),
where vx 5 Mku, vy 5 Mkv, and vz 5 Mk(Dxu
1 Dyv)/L. We note that vz is unusually dependent on
the transverse spatial-frequency variables u and v. The
three independent variables in the transformation space
are u, v, and the vector (Dx , Dy), but the longitudinal
frequency variable vz is a linear combination of (Dx , Dy)
scaled by u and v. Nevertheless, it turns out that this
transform [defined by Eq. (5) without the linear phase
function] has features similar to those of the conventional
3-D FT. In particular, it satisfies the convolution
theorem,5 and therefore this peculiar transform can be
used as a building block in the spatial correlation process.

To recognize the limitations of the system, we first con-
sider the required maximum displacement of the camera
(Dx, max , Dy, max). Following a conventional Fourier
analysis, we know that the maximum camera’s displace-
ment depends on the longitudinal size dzs of the smallest
input element. Assuming Dx, max 5 Dy, max 5 D and
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umax 5 vmax 5 B, the condition DB > L/Mkdzs should be
satisfied so that the information on the smallest longitu-
dinal element is not lost. If this condition is not satisfied,
the spectral width of the smallest longitudinal element
cannot be detected by the system. The bandwidth of the
system in the third dimension vz depends directly on the
product of the transverse bandwidth and the maximal
camera’s displacement. On the other hand, the condition
on the transverse bandwidth is B > 1/Mkdxs , where dxs
is the transverse size of the smallest input element.
Therefore the ratio between the longitudinal and the
transverse resolutions is dzs /dxs 5 L/D. If a system
with a better longitudinal than transverse resolution is
desired, a maximum displacement D longer than L
should be chosen. That means that the imaging system
has a field angle greater than 90°, which may lead to the
undesirable phenomenon of vignetting.6

The observed object should remain in the field of view
of the camera, and therefore another limitation on the
camera’s displacement is given by the condition D
< L tan f 2 Dxs / 2, where 2f is the field angle of the im-
aging system (assume that Dys 5 Dxs). Shifting the
camera beyond this limitation causes the object to disap-
pear from the field of view. On the other hand, the con-
dition D @ Dxs , should be satisfied; otherwise, there is
no justification for keeping the third terms on the right-
hand side of Eqs. (2) while neglecting the fourth terms.
Although it is convenient to analyze the system in
terms of continuous signals, our detected 3-D signal is
discrete in all its dimensions. This is so because each
2-D image is recorded separately as a collection of discrete
pixels inside the computer. Therefore the limitations on
the sampling interval along the camera’s translation
should be considered. Let us assume that the maximal
sampling intervals (dDx,max , dDy,max) satisfy the equation
dDx,max 5 dDy,max 5 d and that the maximal transverse
sampling intervals (dumax , dvmax) satisfy the equation
dumax 5 dvmax 5 b. The criterion db < L/2MkDzs
should be satisfied for a signal to be reconstructed com-
pletely, along the zs direction, from its samples in the
spectral domain. When the well-known criterion on the
maximal transverse sampling interval b < 1/2MkDxs is
substituted into the longitudinal criterion, we obtain that
the maximal sampling interval along the camera’s trans-
lation should follow the condition d < LDxs /Dzs .

3. THREE-DIMENSIONAL SPATIAL
CORRELATION
To perform a 3-D correlation with the 3-D FT, one needs
first to transform the coordinates of O(u, v, Dx , Dy)
from the actual space (u, v, Dx , Dy) to the spectral space
(vx , vy , vz). Then the transformed function
Fig. 2. Schematic of the 3-D spatial correlator. The 3-D scene is observed by an array of cameras distributed on a transverse plane
located a distance L from the scene.
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Fig. 3. Schematic of the 3-D JTC. The reference is located on plane P1 at the origin of the axes. The tested objects are distributed
along planes I–V, around the point (a, b, c).
Õ(vx , vy , vz) is multiplied by a filter function
H(vx , vy , vz). Finally, the output correlation result is
obtained from the product ÕH by an inverse 3-D FT.
The overall scheme of the 3-D correlation is shown in Fig.
2. Note that in the case H(vx , vy , vz) [ 1, i.e., the in-
put spectrum is not modified by any filter, the output cor-
relation distribution is a 3-D reconstruction of the ob-
served input pattern. In other words, in the special case
of the unit filter, the present system can be used as a re-
construction system for 3-D patterns. This special case
will be considered in a future publication.

At least in principle, the scheme described in Fig. 2
might be implemented optically, and thus the 3-D corre-
lation could be executed rapidly and in parallel. How-
ever, such a 3-D correlator would become complicated and
sensitive to noise. On the other hand, the stage of the
multiple 2-D FT’s can be done optically without difficul-
ties, whereas it is preferable for the rest of the process to
be done electronically, as shown in Fig. 3. The hybrid
system offers the best of the two worlds, i.e., the parallel-
ism and the speed of an optical 2-D FT together with the
flexibility of the electronic processing. This concept of a
hybrid system is considered in the rest of this article.

The problem with the hybrid system arises in the inter-
face between the optics and the electronics. The phase
distribution on the output plane of the optical stage is lost
when one records the optical intensity by a camera. To
overcome this difficulty, without losing the phase infor-
mation, we adopt the concept of the JTC7 into our new
3-D correlator. Although the intensity of the spatial
spectrum is recorded by the camera, the JTC yields a real
correlation between two arbitrary functions without los-
ing the phase information.

The 3-D input space of the JTC contains a reference ob-
ject r(xs , ys , zs) at some point—say, the origin—and a
few tested objects, denoted together by the function
g(xs , ys , zs), and located around some other point—say,
the point (a, b, c) (see Fig. 3). Therefore the JTC input
function is given by

o~xs , ys , zs! 5 r~xs , ys , zs!

1 g~xs 1 a, ys 1 b, zs 1 c !. (6)

Substituting Eq. (6) into Eq. (5) and computing the
squared magnitude of the complex amplitude
O(u, v, Dx , Dy) yield the intensity distribution on the
plane P4 :
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I4~u, v, Dx , Dy!

5 UR~u, v, Dx , Dy! 1 G~u, v, Dx , Dy!

3 expH ~i2pM/lf !Fau 1 bv 1
c
L

~Dxu 1 Dyv !G J U2

5 uR~u, v, Dx , Dy!u2 1 uG~u, v, Dx , Dy!u2

1 G~u, v, Dx , Dy!R* ~u, v, Dx , Dy!

3 expH ~i2pM/lf !Fau 1 bv 1
c
L

~Dxu 1 Dyv !G J
1 G* ~u, v, Dx , Dy!R~u, v, Dx , Dy!

3 expH 2~i2pM/lf !Fau 1 bv 1
c
L

~Dxu 1 Dyv !G J ,

(7)

where R and G are 3-D FTs, defined by Eq. (5), of r and g,
respectively. The intensity distribution I4 is recorded by
another camera into the computer, in which the coordi-
nate transform of I4(u, v, Dx , Dy) to Ĩ4(u, v, Dxu
1 Dyv) is done relatively easily.

After an inverse 3-D FT of Ĩ4(u, v, Dxu 1 Dyv), the
output result is

c~xo , yo , zo! 5 E Ĩ4~vx , vy , vz!exp@2i2p~xovx

1 yovy 1 zovz!#dvxdvydvz

5 r ^ r 1 g ^ g

1 ~r ^ g !* d~xo 2 a, yo 2 b, zo 2 c !

1 ~g ^ r !* d~xo 1 a, yo 1 b, zo 1 c !,

(8)

where ^ and * stand for the correlation and the convolu-
tion, respectively and d (•) is the Dirac delta function.
Similarly to an ordinary 2-D JTC, the last two terms of
Eq. (8) are the cross correlations between the reference
and the tested objects. The third and the fourth terms
are centered around the points (a, b, c) and
(2a, 2b, 2c), respectively. The first two terms of the
autocorrelation in Eq. (8) are centered around the origin.
Therefore, if one of the distances (a, b, c) is longer than
the respective size of the tested function g, the cross cor-
relation is spatially separated from the autocorrelation
terms and becomes detectable. Note that even if two of
the three distances (a, b, c) are zero, the desired cross
correlation is still separated from the autocorrelations of
g and r as long as the third nonzero distance is longer
than the respective size of the tested function.

4. SIMULATION RESULTS
We simulated the optical system shown in Fig. 3 by a
computer. In our example the input plane contains six
objects. The reference in the shape of a cross is located
on plane P1 . The other five objects are used as the test
patterns, and they are distributed from planes I to V.
Three of them on planes I, III, and V are identical to the
reference and therefore should be recognized by the sys-
tem. The other two images on planes II and IV are in the
shape of an X, which is different from the reference and
should be ignored by the system. We can also see in Fig.
3 the location of the camera in three states D 5 0,
D1 , DN , while DN is the maximum displacement of the
camera to the left side. To simplify the process in this
simulation, the camera is shifted only along the x axis 2N
displacements, N for each side, where N 5 24. There-
fore in this example the longitudinal frequency variable is
vz 5 MDnu/lfL, where n 5 0, 61, ... 6N. We also use
the following relations: M/lf 5 1 and DN /L 5 0.1.
The dimensions of the input space are Dxs 5 Dys
5 0.025L and Dzs 5 0.1L. Because of memory limita-
tions of our computer, we used objects with a depth of one
pixel only. Simulations with other thicker objects are
given in Ref. 8.

Figures 4–8 are the summary of the simulation results.
Figure 4 presents 5 out of 49 images taken by the camera
from a few positions along the baseline. These images,
and all other 44 images with other Dn values, are Fourier

Fig. 4. Five projections, out of 49, of the input space as seen
from five different points of view along the camera’s baseline.

Fig. 5. Intensity distribution on plane P4 obtained by 2-D FT of
each projection of Fig. 4.
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Fig. 6. 3-D spectral intensity distribution after the coordinate
transformation from (u, v, Dn) to (u, v, uDn).

Fig. 7. Intensity of the cross correlation between the reference
with the shape of the cross and the test objects obtained by a 3-D
inverse FT of Ĩ4(u, v, uDn) that is partly shown in Fig. 6. The
three high peaks indicate the existence of the three crosses
among the group of the tested objects.

Fig. 8. Same as Fig. 7, except that this time the reference is in
the shape of an X.
transformed. The intensity of the respective FT’s of the
images in Fig. 4 are shown in Fig. 5. From the set of 49
2-D FT’s we compose the 3-D spectrum using the coordi-
nates transform from (u, v, Dn) to (u, v, uDn). Nine
samples of the obtained 3-D spectrum Ĩ4(u, v, uDn), for
nine values of v, are shown in Fig. 6. The horizontal
lines Dn 5 constant, v 5 constant in Fig. 5 are trans-
formed into diagonal lines, with a slope Dn , that cross
through the origin in Fig. 6.

A 3-D FT of Ĩ4(u, v, uDn) (shown in Fig. 6) yields the
required cross correlation between the reference and the
tested objects. A collection of 3-D plots of the output
space around the region of the first diffraction order [third
term in Eq. (8)] are shown in Fig. 7. The output correla-
tion space is given in the coordinates (xo , yo , zo), which
are equivalent to the input coordinates (xs , ys , zs).
Each 3-D plot in Fig. 7 presents the transverse intensity
distribution at some zo . The three strong correlation
peaks on planes zo 5 2, 5, and 8 indicate the locations of
the three recognized crosses, which are identical to the
reference. The other less-strong peaks on the other
planes are the tails of the above-mentioned identification
peaks. In the same manner that a correlation peak has a
finite width along the xo or yo axes, it also has a width
along the zo axis. For instance, the strongest peak on
plane zo 5 3 is part of the tail of the autocorrelation peak
whose maximum is seen on plane zo 5 2. The same re-
lation exists between the strong peak on plane zo 5 5 and
its tails on planes zo 5 4 and zo 5 6. The cross correla-
tion between the reference and the two X-shaped objects
can hardly be seen on planes zo 5 4 and zo 5 7 along the
line xo 5 20. These peaks are less than 30% of the auto-
correlation peaks.

The same demonstration was repeated with a different
X-shaped reference object while the tested objects were
introduced to the system exactly as in Fig. 3. The results
of the correlation are shown in Fig. 8. This time, as ex-
pected, the two strongest peaks are on planes zo 5 4 and
zo 5 7, indicating the presence of the X shapes in these
planes. We can conclude this demonstration by saying
that from the five input objects the three crosses were rec-
ognized, and their exact locations in the 3-D space were
identified when the reference object was the cross. When
the reference was changed to the X shape, the two corre-
sponding objects were recognized in their locations.

5. CONCLUSION
We have developed a method for electro-optical 3-D spa-
tial correlation. The correlation process contains a series
of 2-D FT’s, a coordinate transform, multiplication by a
filter, and finally a numerical inverse 3-D FT. Alterna-
tively, the 3-D correlation can be done in a JTC configu-
ration in which we apply the series of 2-D FT’s jointly on
the test and reference objects. Then the coordinate
transform is operated on the spectral intensity, and fi-
nally we obtain the correlation output using a numerical
3-D FT. The 3-D JTC’s were demonstrated by computer
simulation, in which objects seen from the paraxial zone
were recognized in their 3-D natural space. Other appli-
cations of 3-D spatial filtering are expected in the near fu-
ture.
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