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ABSTRACT 

Several methods of concealing an image in a different hardcopy image are presented. The hidden image is secured since 
only a spatial digital, or optical, correlator equipped with an undecipherable key function can reveal the concealed 
image from the visible picture. The techniques and their robustness to noise and distortions are demonstrated. 
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1. INTRODUCTION 
Halftone coding is a common method of representing continuous-tone images by binary values. In one of many 
techniques for halftone binarization1 the various tone levels are translated to the area of binary dots. This method, 
termed binarization by a carrier,2 is related to the pulse-width modulation in communication theory. The locations of the 
dots inside their cells in the halftone picture usually do not represent any information. When the positions of the dots are 
not uniform from cell to cell, the nonuniformity is actually used to reduce the difference between the original gray-tone 
image and the resultant binary image as viewed by the detection system.1  
 
We propose a method of encoding visual information in a halftone image by the locations of the dots inside their cells. 
The algorithm puts together two data files for two images, one that we want to print as an observable picture and the 
other that we want to conceal within the observable picture. The obtained halftone image is termed concealogram. In 
addition, we scramble the mathematical representation of the hidden image with a mathematical key. Once an image is 
encoded, only an authorized person who has the key can reveal the hidden image. The composite image can be printed 
on any printer. The print can then be read by a conventional optical scanner and processed by computer, or optical 
correlator, to access the hidden image. Like a hologram, the hidden image is concealed in a global manner. Every part 
of the visible image contains information on the entire hidden image, such that if one covers or destroys part of the 
concealogram you can still recover the entire hidden image from the rest. It is shown that the hidden image can be 
elicited even when most of the halftone picture is damaged or missing. 
 
The scheme hides one image in another half-tone image so that scanners of any kind can unlock and view the 
information. In general, this technique can be used as a pictured dot code. On the one hand it is a collection of dots used 
as a secret code, which can be deciphered only by a special key. On the other hand, this code is a picture in the sense 
that the code itself is a meaningful image, encoded independently of the hidden image. This feature is different than 
other known codes, for example, the common bar code. Another application might be embedding steganographic 
information3-5 in halftone pictures. The ordinary visible image is conventionally encoded by the dots' size, whereas the 
steganographic image is encoded by their positions. A possible application for this technique might be, for example, in 
identification cards.6 A special halftone photograph of a person on an identification card can show the card holder's 
picture as usual. However, the same photograph can conceal confidential data such as an image of the person's 
signature, his or her fingerprint, or some other personal records. The cardholder in this case must be matched to both 
types of image and to all the rest of the data on the card. Thus counterfeiting of identification cards by a person who 
resembles the authentic person, or switching of the photographs on their identification cards, without being discovered 
becomes much more difficult. The steganographic images are revealed by a special key in a particular processor that we 
discuss next.  
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Our proposed tool for revealing the hidden image is the well-known two-dimensional (2-D) spatial correlator.7 The 
spatial filter of this correlator is the key function that enables the hidden image to appear on the output plane when the 
halftone figure is displayed on the correlator input plane. In other words, the hidden image is obtained as the correlation 
function between the halftone picture and a reference function. The reference function is related to the spatial filter 
function by a 2-D Fourier transform (FT). Using the correlator has the following advantages: 1. The image 
reconstruction from the halftone picture is relatively robust to noise. This is so because the hidden image can be 
memorized globally in all the halftone’s dots. This means that every pixel in the output image is obtained as a weighted 
sum of the entire input picture’s dots. Therefore, even if several pixels from the input halftone figure are distorted, the 
output result can still be recognized because of the contributions from the other, nondistorted pixels. 2. The spatial 
correlator has the property of the shift invariance, which means that, no matter where the halftone image appears at the 
input plane, the hidden output image is produced on the output plane. 3. The same deciphering system can be 
implemented as an optical, electrical, or hybrid system. This is so because spatial 2-D correlators can be implemented 
by the optical VanderLugt correlator,8 by the hybrid joint-transform correlator,9 or by a digital computer. The system 
that we demonstrate in the present study is based on digital computing, although the use of optical correlators is also 
discussed. 4. When digital correlations are used, it is obvious to use the fast-FT algorithm as a tool for computing the 
correlations, both in the coding process and in reading the hidden images. Therefore the computation time is relatively 
short compared with those of other, more general, linear space-variant processors.10  
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Fig. 1: Block diagram of the POCS algorithm used in the first stage of halftone production. 
 



 
2. ENCODING OF IMAGES IN A HALFTONE PICTURE 

The coding process starts with the data of two images, the visible image f(x,y) and the hidden image a(ξ,η). They are 
defined in different coordinate systems because they are observed in two different planes. f(x,y) is observed on the 
correlator's input plane; a(ξ,η), on its output plane. Because they represent gray-tone images, both functions are real and 
positive. An additional function is determined once at the beginning of the process and is referred to the key function 
H(u,v). H(u,v) is the filter function displayed on the spatial-frequency plane, and its inverse FT (IFT) is denoted h(x,y). 
For reasons of algorithm stability explained below, H(u,v) is a phase-only function of the form H(u,v)=exp[iφ(u,v)], 
where φ(u,v) is a random function generated by a random-number generator of the computer and is uniformly 
distributed on the interval -π to π. The computational problem is to find the halftone figure that, correlated with the 
predefined function h*(-x,-y), yields the hidden output image a(ξ,η). The visible image f(x,y) is used as the constraint on 
the input function. This means that, instead of a meaningless pattern of binary dots in the input, the halftone picture 
presents the image f(x,y). The proposed algorithm is separated into two stages. In the first stage we compute a phase 
function exp[iθ(x,y)] of the complex function g(x,y)=f(x,y)exp[iθ(x,y)]. In other words, we are looking for a phase 
function exp[iθ(x,y)], that, when it is multiplied by the image function f(x,y) and passes through the correlator, results in 
a complex function with a magnitude that is equal to the hidden image a(ξ,η). Therefore one can get two independent 
images f(x,y) in the input plane and a(ξ,η) in the output. Both functions are the magnitude of the two complex functions. 
In the second stage the complex gray-tone function g(x,y) is binarized to a final halftone image. In other words, the 
phase function exp[iθ(x,y)] is embedded in the binary pattern by modulating the dots' position and the image f(x,y) is 
encoded by modulating the dots' area. We next describe the first part of the algorithm; the second stage follows.  
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Fig. 2: Schematic of a single cell from an entire halftone picture. 
 



 
As we have mentioned, our goal for the first stage is to find the phase function exp[iθ(x,y)] of the input function g(x,y) 
such that a correlation between g(x,y) and h*(-x,-y) yields a complex function with the magnitude function a(ξ,η). The 
phase of the output function is denoted exp[iψ(ξ,η)], and the complex output function is denoted 

( , )= ( , )exp[ ( , )]c a iξ η ξ η ψ ξ η . Therefore the output correlation function is 
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where ⊗  denotes correlation and we recall that the operators FT and IFT are the Fourier transform and the inverse 
Fourier transform, respectively. From Eq. (1), the input function is given by 
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To compute phase function exp[iθ(x,y)] we choose to utilize the projection-onto-constraint-sets (POCS) algorithm 
modified to operate with correlations.11 This iterative algorithm starts with an initial random function exp[iθ1(x,y)]. 
Then the function f(x,y)exp[iθ1(x,y)] is transformed by the correlation described in Eq. (1). The function c1(ξ,η) is 
transformed backward by use of the inverse correlation defined by Eq. (2). At every iteration in each of the two 
domains, (x,y) and (ξ,η), the functions obtained are projected onto the constraint sets. In both domains the constraint sets 
express the expectation of getting the predefined images a(ξ,η) at (ξ,η) and f(x,y) at (x,y). The algorithm continues to 
iterate between the two domains until the error between the actual and the desired image functions is no longer 
meaningfully reduced.  
 
The constraint on the output plane is defined by the requirement to obtain the hidden image a(ξ,η). Therefore, in the 
output plane, projection P1 onto the constraint set at the jth iteration is 
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where exp[iψj(ξ,η)] is the phase function of cj(ξ,η) in the jth iteration. W is a window support of the hidden image. The 
window's area is smaller than, or equal to, the area of the output plane. Similarly, in the input plane, projection P2 onto 
the constraint set at the jth iteration is  

( ) ( )2 ( , ) , exp , ,j jP g x y f x y i x yθ   =          (4) 

where exp[iθj(x,y)] is the phase function of gj(x,y) at the jth iteration. The iteration process is shown schematically in 
Fig. 1. Note that H(u,v) is chosen only once before the iterations. This H(u,v) becomes part of the correlator, and it is 
never changed during the iteration process. Moreover, H(u,v) is not in any way related to any of the encoded images and 
is not any kind of system memory. Therefore H(u,v) does not limit the quantity of image pairs that can be revealed by 
the same key function. This halftone synthesis can be viewed as a generalization of the Fresnel computer-generated 
hologram synthesis. In this analogy, H(u,v) acts as a generalized medium between the halftone picture and the 
reconstructed hidden image, in a fashion similar to that in which the quadratic phase factor represents the free-space 
medium in the reconstruction of a Fresnel hologram.12 The function of the medium can be that of a key to expose an 
image, but the medium does not contain any information about the image and therefore its size does not limit the image 
capacity that can be utilized by the system. 
 
The convergence of the algorithm to the desired images in the jth iteration is evaluated by two average mean-square 
errors between the two complex functions, before and after the projections in the two domains. As the phase functions 
are not changed by the projections, the errors are the average mean square of the difference between magnitudes before 
and after the projections. The mean-square errors are 
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where the size of the input planes is MXM and the size of the window support of the hidden image in the output plane is 
MWXMW. When the reduction rate of these error functions falls below some predefined value, the iterations can be 
stopped.  
 
As discussed in Ref. 11, there are two conditions to guarantee that these errors will never diverge. First, the correlator 
should be an energy-conserving operator. This property is inherently achieved if H(u,v) is a phase-only function, as is 
indeed so in the present case. The second condition is satisfied if, among all the functions that belong to the constraint 
sets, the two projected functions in the jth iteration, P1[cj(ξ,η)] and P2[gj(x,y)], are the functions closest (by means of the 
mean-square metric) to the functions cj(ξ,η) and gj(x,y), respectively. Because the phase distributions are the same 
before and after the projections in both domains, it is obvious that the second condition is also fulfilled. Therefore the 
POCS algorithm here can never diverge, and at most the errors may stagnate at some values. Note that the nondiverging 
feature of the algorithm is the reason to favor phase-only functions as filters in the spatial-frequency domain. The 
optical realization of the correlator yields another reason to prefer phase-only filters. These filters theoretically do not 
absorb energy and thus promote maximum system efficiency.  

M u∆
 

u 

v 
M v∆ 
 

M u∆
 

Fig. 3: Spatial spectrum of a typical halftone picture. The area surrounded by the white square is the region that is multiplied by 
the filter. 



The first stage of the algorithm is terminated in the nth iteration when the correlation between gn(x,y) and h*(-x,-y) 
yields a complex function whose magnitude, it is hoped, is close enough to the hidden image a(ξ,η) by means of a 
relatively small mean-square error. Note that small error values are not guaranteed and depend on the nature of the 
given images a(ξ,η) and f(x,y). The algorithm is terminated before projection P2, as indicated in Fig. 1. This is so 
because, in the next stage, the function gn(x,y) is binarized, an operation that causes the output image to become only an 
approximation of the desired image. If we chose to terminate the algorithm after projection P2, the error in image a(ξ,η) 
would be increased, because the magnitude of the correlation between P2[gn(x,y)] and h*(-x,-y) is only an approximation 
of a(ξ,η), and the binarization adds more error. The goal of the second stage in our process is to convert the complex 
function gn(x,y) into a binary function b(x,y). By displaying b(x,y) on the input plane, we should obtain the hidden 
image in the output of the correlator equipped with the same filter function H(u,v). In the usual halftone binarization, 
only a single, positive, real gray-tone function is converted into a binary function. However, in the present case there are 
two positive real functions to be encoded, phase θn(x,y) and magnitude |gn(x,y)|, which is close enough to the visible 
image f(x,y) if eg,n is indeed small. Following computer-generated hologram (CGH) techniques,13 we propose to encode 
magnitude |gn(x,y)| with dot's area modulation and phase θn(x,y) with dot's position modulation. Every pixel of the 
complex gray-tone function gn(x,y) is replaced by a binary submatrix of size dXd. Inside each submatrix there is a dot 
represented by some binary value, say, 1, on a background of the other binary value, say, 0. The area of the (k,l)th dot is 
determined by the value of gn(x,y). The position of the (k,l)th dot inside the submatrix is determined by the value of 
θn(xk,yl). Without loss of generality, we choose the shape of the dot as a square. Each dot can be translated to two 
orthogonal axes, whereas each axis can store an independent phase function and thus a different hidden image. A 
schematic of one of the (k,l)th cells is shown in Fig. 2. b(x,y) is the final halftone binary picture, in which an 
approximation of the visible image f(x,y) [i.e., |gn(x,y)|]  is encoded by the area of the dots. θn(x,y) is embedded into the 
halftone pattern by the position of the dots, and the hidden image a(ξ,η) is exposed at the output plane of the correlator 
that is described next.  
 
b(x,y) is a 2-D grating, and its Fourier transform is an array of 2-D Fourier orders on the spatial frequency plane 
separated by M pixels from one another. An example of a typical spatial spectrum of the grating b(x,y) is depicted in 
Fig. 3. Following the analysis of the detour-phase CGH,13 it is possible to show that an approximation of the complex 
function Gn(u,v) (the FT of gn(x,y)=|gn(x,y)|exp[iθn(x,y)]) is obtained in the vicinity of the first Fourier-order component. 
Thus the approximation is expressed as 

( ) ( ), , 2, 2,nB u v G u v if u M u M u v M v≈ − ∆ ≤ ∆ ≤ ∆     (6) 

where ∆u×∆v is the size of the pixel in the spatial-frequency plane and B(u,v) is the FT of b(x,y). The fact that the 
distribution about the first order is only an approximation of Gn(u,v) introduces some error in the reconstructed image. 
This error is inversely dependent on the number of quantization levels used in the halftone picture. The number of 
quantization levels is naturally determined by cell size d. Future improvements in the phase coding may minimize this 
error in a fashion similar to the evolution of the CGH from the first detour-phase CGH13 to the more recent and more 
accurate iterative CGHs.14 Because the interesting distribution, that is, the approximation of Gn(u,v), occupies only part 
of the spatial-frequency plane about the first-order component, we isolate this area of M×M pixels about point (M,0). 
Next, the isolated area is multiplied by filter function H(u,v) and inversely Fourier transformed onto the output plane. 
Because the output distribution is approximately   

( ) ( ) ( ){ }, IFT , ,nc G u v H u vξ η ≈ ,                     (7) 

the magnitude of output function |c(ξ,η)| is approximately equal to the hidden image, a(ξ,η).  



 
 
 

Fig. 4: (a) The resultant halftone image. (b) The hidden image revealed by the correlation between the image in (a) 
and the key function. 
 

(a) 

(b) 



 
3. EXPERIMENTAL RESULTS  

The proposed halftone coding method was examined with a digital correlator. The first example is shown in Figs. 4. 
Fig. 4(a) is the visible halftone image and Fig. 4(b) shows the hidden image. Originally the boy's picture was a gray-
tone image of the size of 512×512 pixels, and the hidden picture with the acronym 'BGU' was a binary image of the size 
of 64×48 pixels. The size of each one of the three planes in the POCS algorithm was 512×512 pixels. The phase filter 
H(u,v) distribution was generated by the random-number generator of the computer. The POCS algorithm was iterated 
on average as many as 50 times. Additional iterations have not meaningfully reduced the two errors ec,j and eg,j. 
 

 
 
 
 

 
After completing the POCS algorithm, we binarized the resultant complex functions gn(x,y) according to the above 
mentioned rule. The size of each cell in these experiments is 9×9 pixels, and the gray-tone image is quantized with 19 
levels of magnitude and 9 levels of phase. An enlarged region of the halftone figure is shown in Fig. 5(a). For 
comparison, the same region but without modulation of the dot position are shown in Fig. 5(b).  
 
The robustness of the method was also examined. As mentioned above, this robustness is achieved because each pixel 
in the output is obtained as a weighted sum of many input pixels. The exact number of pixels that participate in this 
summation is equal to the size of h(x,y). In the present study we did not take any action to narrow h(x,y), as was done in 
the research reported in Ref. 15, for instance. Thus we expect from our system a maximum degree of robustness to 
noise and distortions. In the first example of distortions illustrated in Fig. 6(a), 16% to 40%, in 8% step, of the pixel 
values of the halftone pictures were flipped randomly from their original values. The robust behavior was maintained 
for this type of noise, as is shown by the correlation results. The hidden images revealed from these covered halftone 
figures are shown in Fig. 6(b). In another example, illustrated in Fig. 6(c), the four images were covered in the vicinity 
of their centers with zero-valued squares of an area that varied from 22% to 55%, in 11% step. The hidden image can 
still be recognized, even when 55% of the area of the halftone picture is missing shown in Fig. 6(d). 
 
In the next example six different images were hidden in a single colored halftone image. The original colored picture 
was separated to its three basic monochromatic, red, green and blue images. Each one of the basic pictures was used to 
conceal two different icons, each one along one of the two Cartesian axes. The results are demonstrated in Fig. 7. Fig. 

  

Fig. 5: Enlarged region of a halftone picture (a) with and (b) without dot-position modulation. 



7(a) shows the three halftone images for the three basic colors after the coding process. The original and the 
reconstructed hidden icons, two in every basic color, are shown in Fig. 7(b). Finally, the three separated halftone 
pictures were superposed to a single colored image shown in Fig. 7(c). Using colored pictures and concealing images 
along two orthogonal axes enable to hide six different images in a single halftone picture.  
 
 
 
 
 
 
 

 

Fig. 6: (a) Set of halftone pictures in which various amounts of their pixel values have been randomly flipped from their original 
values. The number of flipped pixels is varied from 16% at the rightmost figure to 40% at the leftmost figure. (b) Correlation 
results between the set in (a) and the key function. (c) Set of halftone pictures covered by a zero-valued square with area values 
that vary from 22% of the picture area at the rightmost figure to 55% at the leftmost figure. (d) Correlation results between the set 
in (c) and the key function. 

(a) 

(b) 

(c) 

(d) 



 
 

   
 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

Fig. 7. (a) Three halftone pictures in the three basic colors; red, green and blue. (b) The six reconstructed icons, each two 
concealed in a different monochromatic halftone picture of (a). The small insets are the original icons. (c) The final colored 
halftone image obtained by superposition of the three basic images of (a). 
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4. CONCLUSIONS 

We have proposed and demonstrated a method of concealing an arbitrary image in a different arbitrary halftone picture. 
A digital or optical correlator with a unique key filter can recover the hidden image. Every part of the hidden image is 
concealed globally in all the points of the concealogram. This feature increases the robustness of the process to noise 
and distortions. The amount of the stored data can be significantly increased by shifting the halftone dots along the two 
orthogonal Cartesian axes. Additional expansion of the concealed data is achieved by use of colored halftone image 
which can be considered as a composition of three monochromatic independent concealograms.   
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