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Computer-generated holograms are employed to design any desired intensity distribution along the propagation

axis for a finite specified distance.

A computer-generated hologram is most commonly
a transmission mask employed to construct a de-
sired transverse image.! In this Letter we consider
the problem of constructing a longitudinal image
from a computer-generated hologram. That is, we
design a mask that results in a desired arbitrary
complex amplitude distribution along the propaga-
tion (2) direction at a given single transverse (x,y)
point. Holographic methods for creating a longitu-
dinal profile appear in Refs. 2-5. However, these
holograms were synthesized to construct the spe-
cific case of Bessel beams only. Here we extend
this concept to the general case of constructing any
desired longitudinal profile by computer-generated
holograms.

Rosen® proposed another technique to control the
axial distribution, using synthetic apertures. This
method was based on the Rayleigh—Sommerfeld
diffraction theory and thus was applicable to
the entire axial region (from the near to the far
field). However, two problems arise with this
method. First, the iterative algorithm for cal-
culating the hologram sometimes diverges, and
secondly, during the synthesis procedure the
variable z must be changed to z2, which causes
differences between the simulated axial profile and
the actual profile and leads to a degradation in
the image quality. In this study these problems
are eliminated.

Assume that an arbitrary transparency g(x;, v)
is placed at the first focal plane of a lens of infinite
diameter (see Fig. 1). Using the Fresnel approxima-
tion, we obtain the three-dimensional complex ampli-
tude distribution past the lens’:

u(x,y,2) = exP(]kz) f [ g'(xz,¥2)
X expl:—-2—f(x2 + yzz)]
X exp{j%[(x — )+ (y - yz)Zdezdyz, 1)

where (x2, y;) are the coordinates of the lens’s plane
and g'(xs, y») is the field amplitude just in front of
the lens, which is given by
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8 (xa, y0) = —— xP(ka ) [ / g(x1, )
x exp] jg[m — 2+ 0 = ] fdmdy. @

Substituting Eq. (2) into Eq. (1), changing the order
of integration, and performing the integration over
x2 and y;, we obtain

u(x,y,z) = exP[inzf+ £)] f f g(x1, 1)
X eXP[_jL?'f_g_f)(xlz +3?) - j?(xxl + yyl)] dx,dy; .

3

We note that, at the second focal plane z = f, Eq. (3)
yields the familiar Fourier integral relation between
u(x,y,z = f) and g(x;,y,). Here we are interested
in the field distribution along the z axis (x,y = 0).
Changing to polar coordinates, (x,,y,) = (r, 8), we see
that Eq. (3) becomes

u(z) = explik(z + f] fowt(p)exp[—jﬁk(z = f)p]dp
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Fig. 1. Optical system used to obtain the axial Fourier

transform.
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The significance of Eq. (4) is that, by use of a sim-
ple lens, the complex field distribution along the z
axis is the one-dimensional Fourier transform of ¢( p),
i.e., the §-averaged radial field profile of the original
aperture at the front focal plane, with the variable
fo = (z — f)/2Af2. This spectral distribution is mul-
tiplied by the phase function exp[ jk(z + f)], and its
center is located at the second focal plane z = f. One
immediate application of this Fourier relation that we
demonstrate here is the tailoring of the axial inten-
sity profile of a light beam.

The functions ¢(p) and T'(f,) are related to each
other by Fourier transformation. Our goal is to find
a mask g(x;,y;), subject to some constraints, such
that |u(2)|? is equal to a predefined intensity profile
Io(z). To solve this problem we use the projected-
onto-constraint-sets algorithm,® which is based on
a Fourier relation among the various domains and
therefore is an iterative nondiverging algorithm.?

In most applications it would be desirable to max-
imize the beam intensity along z. We thus con-
strain £(p) to be a pure phase function. Because
we determined that the final mask is constant along
the 6 axis, g(x;,y) is also a pure phase function.
The optical system shown in Fig. 1 thus contains no
absorbing elements. To design a mask #( p) that re-
sults in a given (arbitrary) axial intensity distribu-
tion Iy(2) = |u(2)|? the projected-onto-constraint-sets
algorithm may start with an arbitrary random aper-
ture function #,(p). In the ith iteration of the algo-
rithm the mask function ¢,(p) is projected onto the
constraint set in the mask plane by the operator P,
defined by P,[¢,( p)] = exp[ j ¢:( p)], where ¢,( p) is the
phase distribution of ¢;(p). The projected aperture
is Fourier transformed to yield T:(f,). This result is
projected onto the constraint set in the spectral plane,
where the projection is defined by

PAT(f)] = | Y ofg sl 7l fo 2 0F,

(5)

where ¥;(f,) is the phase distribution of Ti(f,) and
Af, is some selected interval. According to Eq. (5),
such a projection constrains the intensity |u(z)|2 to be
proportional to Iy(z) along the interval Az = 2Af2Af,.
The next step is to return to the mask plane by calcu-
lation of the inverse Fourier transform of P,[T;(f )]
These four operations repeat iteratively, while in ev-
ery iteration we calculate the error function

=37 [ M) - PAT AL, ©
Af p JAfp

This expression is taken to reflect the performance
of the function ¢;(p). The proof of the nondiverg-
ing property of the projected-onto-constraint-sets al-
gorithm (i.e., e;;; < e; for all i) is given in Ref. 9.
The final obtained phase function ¢( p) is converted to
a two-dimensional aperture function g(x;,y,) by the
relation

€;

glx1,y) = g(r,0) = rect(z—gq;) j; t(p)8(p — r¥dp.

(7

To avoid potential misalignment between the mask
and the lens and to take full advantage of the holo-
graphic mask one may replace the two-element sys-
tem by a single mask located, for instance, at z = 0.
We obtain this hologram by taking g’(x,, y,), which
is the free-space propagated distribution (over f) of
&(x1, 1), and multiplying it by the transmission func-
tion of the lens. It should be mentioned, however,
that, unless the constraint at the mask domain is
changed, the mask this time is no longer, in general,
a phase-only mask. It will thus entail some absorp-
tion and a diminution of the axial intensity, compared
with the configuration employing a lens.

Two independent factors may determine the length
of the axial interval over which we may specify the
intensity profile. One factor is the diameter of the
lens, and the other is the resolution of the mask.
When the limitation is due to the mask’s resolu-
tion the axial interval extends over the distance of
f + 2Af%/b% from the lens, where b is the mini-
mal ring width on the mask (we define the limit
of the axial interval as the first zero of the asso-
ciated sinc function). This interval starts immedi-
ately after the lens when f < b%/2A or at a distance
f — 2Af?%/b? from the lens when f > 52/2A. When
the system is lens-size limited and f < b2/2A, the
longitudinal interval is determined from simple geo-
metrical optics considerations® as Az = Df/d, where
D is the lens diameter and d is the mask diameter.
In this study it is assumed that the system is mask-
resolution limited.

As a first example, we simulate a hologram
that constructs a constant intensity distribution
for a specified distance along the propagation axis.
Figure 2(a) shows a cross section of the phase dis-
tribution of the phase-only mask obtained from the
projected-onto-constraint-sets algorithm after 400
iterations. The mask contains 128 X 128 pixels.
The intensity distribution along the z axis, which
was obtained by a computer simulation, is shown in
Fig. 2(b). A transversal cross section of the intensity
distribution over the second focal plane is depicted in
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Fig. 2. (a) Cross section of the phase distribution of the
hologram obtained by the projected-onto-constraint-sets
algorithm. (b) Axial intensity distribution simulated by
the computer. (c) Transversal intensity cross section of
the beam at the second focal plane.
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Fig. 3. (a) Hologram obtained by the direct-binary-
search algorithm. (b) Axial intensity distribution ob-
tained around the second focal length. The long-dashed
curve is the desired profile, the solid curve is the
simulated result, and the crosses connected by the
short-dashed curve are the experimental measurements.

Fig. 2(c). We see that, at least in this plane, we have
a beamlike shape, and that is the case for most of
the final masks we have examined here. In the case
in which, for some reason, the lateral distribution of
the light is not a beamlike shape, it is possible to add
constraint sets that enforce this requirement. For
instance, the projection operator given in Eq. (7) of
Ref. 6 may be added to the two-dimensional Fourier
transform of g(x,, y1) to produce a beamlike shape at
the second focal plane.

In the laboratory we are able to produce only binary
masks. This leads us to the extensive field of pro-
ducing binary computer-generated holograms.® In
our case, however, the calculations of the computer-
generated holograms’ values are done with one-
dimensional vectors. From Ref. 10 we know that,
with a binary vector, we can control, within a rea-
sonable reconstructed error, only a limited range of
the spectral plane far from the origin. Since in our
example we are limited to a binary vector of 32 pixels
[describing the function ¢(p)], a preferable algorithm
(with respect to search time and final reconstruction
error) is the direct binary search.®

In Fig. 3(a) we show the mask used in our exper-
iment. This mask was calculated by four iterations
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of the direct-binary-search algorithm. The hologram
was displayed on a magneto-optics spatial light mod-
ulator (128 X 128 pixels) illuminated by a plane wave
in the optical system, as shown in Fig. 1 (f = 61 cm).
The results appear in Fig. 3(b). The long-dashed
curve shows the desired intensity profile I,(z), and
the solid curve represents the resulting longitudi-
nal intensity distribution simulated by the computer.
The crosses connected by the short-dashed curve are
the measured intensity values obtained around the
second focal plane. Since the spatial light modula-
tor is not an ideal bipolar transparency, a high in-
tensity level is obtained at the focal region, which is
truncated and not shown in this figure.

So far we have concerned ourselves solely with the
axial synthesis u(0,0, z) of the beam. With this ac-
complished, the question of the off-axis u(x, ¥, 2) be-
havior of the beam is of interest. It is impossible to
consider the general problem in full rigor; however,
important quantitative conclusions can be drawn.
We return to Eq. (3) for the three-dimensional field
distribution. For x,y # 0 we need to consider the
effect of the factor exp[ - jk(xx, + yy;)/f]in the inte-
gral. This factor causes u(x,y,z) to differ substan-
tially from (0, 0, 2) once k(x1)maxx/f = 7. We thus
expect u(x,y,2) = u(0,0, 2) for x < Af/2(%))max, Where
(*1)max is the transverse dimension of the mask. In
other words, we expect the axial intensity distribu-
tion to remain essentially a constant over a trans-
verse dimension equal to the diffraction-limited spot
size Af/2(x1)max Of the mask. The possibility of a
nondiffracting beam®® suggests itself immediately,
as well as a nondiffracting dark hole and other forms
of optical-beam sculpting.
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