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A new integral transform involving three functions, a triplation, is introduced and its optical implementation is demonstrated.
The optical system is based on a rotational shearing interferometer illuminated by partially coherent light. The triplation opera-
tion is analyzed theoretically and some of its possible applications are discussed.

Introduction

In a recent publication [1] a generalized interferometric signal processor was introduced. In this processor
Fourier hologram is recorded by a rotational shearing interferometer and reconstructed by a conventional
herent 2-f optical Fourier transform (FT) configuration. It has been shown that a nonconventional processor
uld be obtained which involved three arbitrary complex functions. In some special cases and under various
nditions, the system becomes an efficient image processor for specific tasks. For instance, the system can be
sed as a joint transform correlator (JTC) [2] illuminated by spatially incoherent light. In this paper we con-
der more extensively the case of the generalized processor from a theoretical point of view and demonstrate
operation experimentally. In the general case, three functions may be involved in some mathematical op-
ion, which can be degenerated to more familiar operations, like convolution or multiplication between two
ctions. The initial goal of this work was to investigate various effects and processes that were discovered
ing previous work. One of these was the implementation of some unusual mathematical transformation with
slightly modified rotational shearing interferometer. The main purpose of this paper is to introduce this trans-
, and to consider its principal properties. Although the full merits of this transformation are not clear yet,
ome possible application will be briefly discussed and summarized in the conclusions. One particularly in-
eresting application is described in sec. 4 while some special cases are considered in sec. 6. Preliminary ex-
imental results are given in sec. 5. We start the analysis with a description of the optical system, which ex-
tes this processing.

The optical system

The optical system is composed of a rotational shearing interferometer illuminated by a spatially incoherent
quasi-monochromatic light source [3], as shown in fig. 1. Three functions are involved in the process. Two
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i . This relation is the well known Van Cittert-Zernike theorem [5] with g; considered as the mutual coherence
Ly function between two points separated by a distance x in plane P,.
PLANE —> P The intensity distribution given by eq. (1) is recorded as a transparency, and then displayed in the input
WAVE —> ‘O¥ ! lane of a conventional coherent 2-f system, equipped by a lens L; with focal length f;. The output distribution,

(F), at plane P, (¥ denotes the coordinate of plane P,) is obtained by performing a FT (with the scale factor
Af3)~") on I(p) given by eq. (2):

(F)=g; 6—::’) j a(rgt (r—jfT:F) dir+gs (—J;—: F) _[gz(r)gﬁ‘ (r—%i) d?r
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The first two terms, located around the origin, can not be separated from each other and thus are of no interest
ere. We shall mainly be concerned with the other two terms which can be spatially isolated transversally, by
introducing a linear phase function, or longitudinally, by using quadratic phase functions [1].

The third and the fourth terms represent a new kind of integral transform which we shall call triplation since
it involves three functions. All three functions contained in the third term of eq. (4) may be complex functions,
with the restriction that the FT of g5(r), G5(&) should be a positive valued function.

Fig. 1. Rotational shearing interferometer which is designed to perform the triplation.

of them, g,(r) and g,(r), may be general complex functions placed in the input planes, P,, of the two inte
ferometer channels. The third function, G, (&), is the intensity distribution of a spatially incoherent light sour
in plane Py, and is therefore restricted 1o positive values. Since plane P; is in the focal plane of the lens
and L, it is considered as a Fourier plane related to plane P,. In one channel of the interferometer ther:
two periscopes [4], that serve to rotate the light distributions in the two channels with respect to each o
by an angle z. Every point in the source generates a plane wave of relative amplitude /G5 (¢) propagating

an angle sin "' (&/f;) in one channel and sin='(—&/f;) in the other, relative to the optical axis. These pl e
waves are multiplied by g, (r) in one channel, and by g,(r) in the other. The overall intensity distribution

plane P; is obtained by a coherent superposition of the complex amplitudes form each source point propagated”
through the two channels and a summation over all the independent source points:

I!:dz"\/ G3(&) CXD(—i%i'r)gl(r) exp (—i%p-r)

2

10)= [ @

+ i dr /G5 exp(ifff-r)gzcr) eXp(_i%’:p-r)

3. The triplation operation

We define the triplation operation by the relation,

; (1)

) , 6(5)= (o128 0 = [ (0@ (x-5)gs(v-as—-b) dx. (5)
where Z and R are the aperture areas at planes P, and P,, respectively; & r and p are the position vectors at

planes P,, P, and Ps, respectively; f;, f; and f; are the focal lengths of lenses L, L, and Ly, respectively. After:

1t is easy to show that the triplation is the distribution along the line t=as+ 4 in the triple correlation domain,
some algebraic procedures we obtain,

Where the triple correlation is defined by [6]
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To see the connection between these definitions and the optical result, we rewrite the third and the fourth g €6 (), Gs(—n), G3(—u) 3+ (G (u), Gs(w), Gi(—u) 3
of eq. (4), with scaled versions of the various functions ) ’ iy
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where e * is the convolution sign, and « is equal to p/Af. As we see from egs. (10) and '(9), the optical system
‘ ' i €3 ) fi+h ) f+h £ st rates now the special triplation with (a, b)=(1/2, 0) in the output reconstruction plane and (4, b)=
&i(r)=g 0_., r) ) gz(r)=gz(z r), &(r)=g (T r) » &(r) =g (fT r) i i A ‘3"- . 0) in the Fourier plane.

Obviously, the two terms of eq. (7) are triplation distributions with parameters: (a, b) = (f/ (i+£),0),a
(a, b)=(f./ (fat+1y), 0), respectively. In other words, changing the ratio between the focal distances of the g
Fourier lenses produces the distributions over planes, each one represented by the equation t=als+5, '
Lis the identity matrix, b= (0, 0) and a= (f,/ (f,+/,)), in the four dimensional triple correlation distributi
between three 2D functions. To cover the whole triple-correlation domain by triplation operations we have
scan all slope values by compensating for the scale changes. One way to do this is by a proper imaging syste
in each channel, that can be independently varied. Alternatively, one may choose a single slope value (sin
focal lengths ratio) and change gradually the parameter b. Changing b can be easily achieved by shifting o1
of the three functions within its plane.

The spectral distribution of the triplation is derived in the appendix. It is shown that the Fourier trai
of a triplation is a triplation too, which operates on the scaled Fourier transform of the original three functig

plator as a signal processing system

o investigate an interesting possible application of the triplator we define a ‘system bya ch?racteﬁstic func-
n, h(x), which transforms an input signal g(x) to an output o(x") according to the relation,

Jo(5) e (¥5%) o ax. an
2 2

is output result is directly obtained for 2D functions from the third term of eq. (9) if we s:et &(r)=
(—r)=g(r), and the integration variable is changed properly. In other words, the proposed optical system
iplements the signal processor as defined by eq. (11). : _ » s
/ though the triplation, in the form of eq. (11), is not linear with respect to ﬂ:le input funcluon, 8 1? maintains
me characteristics of linearity, which we shall call weak linearity (WL), which has prz.tc.ncal s1gn1ﬁ'cance for
. processing. The WL operation is defined for a set of fuuctioqs g,(x) and an additional function A(x),
I having finite extent. If the separation among the functions g;(x) is large (?nough so that /(x) can })c pilfogd
stween any two input functions g;(x)’s without overlap, an operation & is defined as WL operation 1f the

lation,

/ ZAigl'(-x"'di)} = 2 FiAg(x—dy)}, (12)
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where G{* (u) =exp(—i2nbu) G;(u), G;’s are the Fourier transforms of the g’s and ¥[d] is the scaling o
erator defined by the relation ¥'[d] G(u)=G(du). For the special cases, a=0, or a= 1, the triplation de;
erates to the conventional correlation integral. However, while the convolution integral can be easily eval
using the convolution theorem, eq. (8) indicates that such a fast procedure is not applicable for the complet
triplation. Therefore, the optical implementation of the triplation has an additional value.
Using the above definitions for the special case where fy=f,=f,=f; the complex amplitude distribution i e s
plane P, given in eq. (4), can be rewritten in the form, s satisfied with d; being the distance of (x) from the origin (4/'s are eoiiftns). e
It is easy to show that triplation, as defined in eq. (11), is a WL operation and also shift invariant.

[Z 4,8 (x—.z—xl —df):l I:Z Arg; (ﬁz——x +dj):| h(x)dx
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‘where o,(x') is defined in eq. (11) for the ith input, and crossterms were droppedlby the no‘n-oyerlappmg
condition. Since in many cases practical signals satisfy the conditions for WL operatmq, the triplation '(Falns-
form may prove quite useful for signal processing applications. An interesting example is pattern recognition
under certain conditions.

A substantial difference exists between correlation and triplation. In the former, the extent Qf non-zero values
in the output is the sum of the extent of the input function_plus the extent of the system 1mpuls? response,
h(x). In the latter, the extent is twice that of the input function and does not depend on A(x). This property

where * denotes correlation. Following egs. (8) and (9), the intensity distribution in plane P, given in eg.
(1), can be rewritten in the form

118 119



1 March 1993
Volume 97, number 1,2 OPTICS COMMUNICATIONS Yolume 97, number 1.2 SRR A

may be useful for cases when the impulse response function is wider than the input signal. ‘ superior performance of the triplator over the mnVentio@ correllator }Nlth respect to cor:eslanon ;t:telalt& tsll::l':irlllelsiss-
In many cases of pattern recognition algorithms [7] the impulse response function is wider than some .i  Let the two rectangles, shown in fig. 2a, be two 1D signals in a given I;au]n:mg BSCL ;‘::z inaﬁ 2b. The

the objects in the training set. However, in these algorithms the meaningful part of the output result is the valye to identify the higher rectangle using a synthetic discriminant fynctngn ( D .) E_ ]235 §I' ey iz.tmel i i
of the correlation peak. The usual design goal of these pattern recognition systems is to obtain high and sharp. ventional correlation result between the SDF an_d e mpm. L b gl 26 dia bg tion shown in
correlation peaks, indicating recognition, and object location. The following simple example demonstrates tha h(x) and performing a triplation on the same input function gc?nera.ted the output distributio E e
; 2d. Although both processes detected the higher rectangle, the triplation peak is much narrower. Note tha
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Fig. 2. Comparison of signal matching operation between a conventional correlator and the triplator. (a) The input signals to bol

x
system. (b) The SDF, calculated to identify the tall rectangle. (c) The correlation result between the input signals and the SDF. (d) The

triplation result obtained with the same input signals and SDF. Fig. 2. (Continued.)
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the triplation operation produced an output distribution with a separation between the two Cross:
twice as large as that between the two crosscorrelation peaks. This makes the effective width of t
peak narrower by an additional factor of two. It is expected that filters prepared for triplation

even better, but this subject is already outside the scope of this paper.

-tn'plations,
he triplation
will pcrf()rmj ]

5. Experimental results

To demonstrate the actual operation of an optical triplator some preliminary experiments were performed
with some of the results shown in figs. 3-5. In these illustrations the input masks are the same for both channels, 1
8(r)=g,(r)=g,(—r), and the two FT lenses are identical. As the input function we used a small section from
a resolution chart including three vertical lines and three horizontal lines, In the first experiment there was ng
source mask after the diffuser, thus G could be considered as a unit function. Figure 3a shows the intensity
distribution over plane P;. The four different terms of eq. (10) cannot be spatially separated, therefore the
triplation distribution is not distinguishable. However, since g(r) is shifted from the origin by some distance,
the triplation terms in plane P,, given in eq. (9), are transversally separated. In order to see it we displayed
the distribution of fig. 3a on a liquid crystal television (LCTV) SLM and illuminated it by a plane wave through
a 2-f system. One such triplation distribution, obtained in the first diffraction order, is shown in fig. 3b, The
result is the reconstruction of the input mask, |g(r)|? as expected when g3(r)=4(r). In the second example
we inserted a coarse grating immediately after the diffuser. The source mask may be expressed, this time, ag

G3(& &)= Y rect (é“—_a,zﬁi) (14) :

where the width, Af,/d, is approximately equal to the width of a single line in the input mask, g(r). The spectral ;‘
distribution, I(u) is shown in fig. 4a, while fig. 4b depicts the same spectrum after subtracting the bias term,

This bias distribution is equal to the two first terms of eq. (10) were recorded from each channel while the
other was blocked. The subtraction was performed digitally between the different frames. Displaying the dis- i
tribution of fig. 4b on the SLM and performing the Fourier transform, yields, in the first diffraction order, the
pattern shown in fig. 4c. The result is a blurring of the input transparency along the y axis, and a reasonable E
reconstruction along the x axis,

Fig. 5. Experimental results of the optical system oblained with
a shifted grating as a source mask and with the same input masks
asin fig. 3. (a) The intensity distribution over the plane P;. (b)
The intensity distribution displayed on the SLM, after subtrj"icl-
ing the bias terms. (c) The triplation distribution measured in a
part of the plane P,.

Fig. 4. Experimental results of the optical system ob.ta'med with
a centered grating as a source mask and with the same input masks
asin fig. 3. (a) The intensity distribution over plane P3. (1.3) The
intensity distribution displayed on the SLM, after subl‘racnng the
bias terms. (c) The triplation distribution measured in a part of
the plane P,.

Fig. 3. Experimental results of the optical system obtained without source mask and with a small section of a bar chart as the input masks.
(a) The intensity distribution over plane P,. (b) The triplation distribution measured in a part of plane P,.

123
122



NS 1 March 1993
Volume 97, number 1,2 OPTICS COMMUNICATIONS tume 97, number 1,2 OPTICS COMMUNICATIO

1 March
' 1s. The input signal g(x), and the triplation result, when H (1) = #{h(x)}= G:(#) =const. are shown in figs.
E ,-nd b, respectively. The second tested function H(u), and the output rest}li, V-Vlth the same input (fig. 6a),
depicted in figs. 6¢ and d, respectively. Finally, the same grating of ﬁg, 6‘c is shlftedAby a half .cygle, as shos_»m
1 fig. 6e. The consequential output result appears in fig. 6f. All these triplation results indicate similar behavior
o the optical experimental results.

In the last demonstration we used the same grating as for the source mask but shifted it by a distance
the ¢, direction. As before, figs. 5a, b and ¢ show the spectral distribution, the spectrum without the bias fi;
tions and the final output distribution in the first diffraction order of plane P,, respectively. The tripla; i
results, shown in figs. 5c, illustrates edge enhancement along the y direction. 1

To support the laboratory results the above experiment was repeated by computer simulation using 1D
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L ] 0.4 |
0.2~ - r
L ] 02
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Fig. 6. Simulation results of the 1D triplator. (a) The input signal. (b) The output distribution when the source mask is equal to constant.
(¢) Another example of a source mask. (d) The triplation result with the function shown in (c). (d) The same source mask as in (¢) Fig. 6. (Continued.)
but shifted a half cycle. (e) The triplation result with the function shown in (d).
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Source mask . 3 . . :
. oherently illuminated system the rotation angle between the interferometer channels has no longer a physical

] R i . . .
(e 2 i
_( ) j aning. The output distribution over plane P4 becomes
1.0 L by wil o w o " ¥
7 1 . 0= [ ansio-nr [maso—n ar [anne-n o [a@se-naer, 03)
r | 1 R R R R
0.8~ ] with the last two terms representing the proper correlation distribution. There is no obvious advantage in im-
L ] 1ememing a JTC using interferometric architectures. Nevertheless, some attributes of such a system are now
s . under study, in particular for the realization of complex reference functions by using only positive valued masks.
) n " The other three correlators operate under spatially incoherent illumination and in all of them it is possible
r ] 10 implement a general complex impulse response function. The correlation in plane P; is obtained between
il | G, and G if G, is constant. In this case the intensity distribution in plane Pj is
i ] J(u)=const.+ IG;(—u') |Gy(u—u')|* d*u + JG‘;‘(u—u’ )G3(—u') d%u’' + J- Gy(u' )Gy(u' —u) du’ .
o2r . (16)
L 1 In this particular case the correlation is obtained for any rotation angle since the function g; is just a delta
2.0 L L1 L p 1 Pt ooy gy function at the origin, which remains unchanged by rotation. If G5(u) is considered as an input function, and
iy 200 400 000 800 1000 1200 g,(r) is taken as a spatial filter (therefore G,(u) is an impulse response function ), then the third (or the fourth)
term of eq. (16) yields a correlation function between an intensity distribution input to a complex impulse
s = E Triplation result _ response function. Compared to the multi pupil masks methods [9] of incoherent spatial filtering, this pro-
) N . LI S ‘ posed configuration requires only one pupil mask, and is equivalent in the complexity to one of Leith’s cor-
| 1 i relators (case 2 in ref. [10]). However, unlike in the latter approach, here the correlation is done on an ir-
1.0 N radiance input transmittance, which means that the system can processes diffuse objects as well. A drawback
i J of both these correlators is that there appears to be no way to separate the undesired terms of eq. (16) from
B ] the third term.
o8- u M - " The two other correlators exist only if the rotation angle is larger then zero. The correlation between G, and
L i G, is obtained when G, is constant which is obtained by a completely incoherent light source in plane P,. In
“—_,:— L r i this case the intensity distribution in plane P; is given by
3 oof b :
- i I(u)=const.+ jG,(u’)Gi‘(Zu—u’)dzu’+ J.Gg(u')GT(Zu—u’)dzu’ ; (17)
0.4 1 ;
s B The usefulness of such correlator is not clear since it makes a correlation between the Fourier transforms of
i 1 both input functions instead between the functions themselves.
0.2 ] The fourth correlator is obtained in plane P, with g, =const., and is given by
i 1 ¢(F)=g;(F) const.+g3( —F I r)gs(r—F dzr+J‘ *(r)g;(2r+F) dr+ j. r)gs(=2r+7) d°r. (18
ool L IYNE L | M hf'\N P VL 83(F) g(=F) Rgz( )83 (r=F) Rgz( )85 ( ) Ré’z( )8( ) )
0 200 400 600 800 1000 1200
3 . The two last correlation terms can be easily separated in plane P, by shifting g, out of the origin. Considering

& (r) as the input function and G,(u) as a spatial filter, a correlation is obtained between two complex func-
tions, although illuminated incoherently. To obtain a similar result with the method described in ref. [9], 6
different pupil masks are required. However, the drawbacks of this correlator mainly come from the low dif-
fraction efficiency of the spectrum grating /(#) in plane P;.

Fig. 6. (Continued. )

6. Correlators obtained from degenerate triplators

Returning to eas. (9) and (10), we consider their third term. It is easy to see that these processors can be
reduced to four dlffgrent correlators (in fact, there are six correlators, but the functions g, and g, are analogues
as well as the functions G, and G,).

The corre_latlon between g, and g, is obtained in plane P,, when G3(u)=05(u). Such a source mask converts
the system into a coherent one, and therefore this correlator is the classical coherent JTC [2]. Since it isa

- 7. Conclusion
A new integral transform, the triplator, was introduced and implemented optically. Mathematically, distin-
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Z{T_[drg'(r) exp(—i2nitr) j duexp[iZn (r— l_iz;) u] G (-li—a) G, (% n ﬁ)
E{fl J duexp (—i2n£u) G, (TE]) G;(l—a:ua +ﬁ) I drg, (r) exp[ —i2m(ii—u)r]
-iz’f%alf) Ga(l—fa)G,(% +a) Gy (-1
a5 ol

_izna—fl (u-a)) G, (u)Gs(u—i)Gy(u—ii/a) ,

guishable feature of the triplation is that the transform to the Fourier domain yields a triplation too (eq. (8)
Implementations of this operation in the field of image processing are currently under intensive investigat;

In principle, a sequence of such transforms can be used to generate the whole domain of a triple correlatig
As far as we know, optical implementation of the triple correlation between 2D functions has never been dg
yet. The applications of the triple correlation in the signal processing field are well summarized in ref. [6
and we would only like to mention that the triple correlation is a generalization of an extended family of trag
forms and representations, like ambiguity function, Wigner distribution, etc. That means that the Propos
system may be used as an analog computer for many mathematical operations.

The triplator itself can be used for signal processing, similar to the conventional correlator, but with
properties, such as sharp identification peaks in pattern recognition schemes. Degeneration of the triplat
yields a collection of correlators, out of which three may be useful for incoherently illuminated corre]ation—
tween complex functions. i

In the experimental work we demonstrated the feasibility of implementation using some simple example
Of course, the results for these simple cases could be also derived by conventional spatial filtering. Howey
the two procedures are substantially different and the triplation operation has additional possibilities,
of these were indicated here while others are still under investigation.
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Appendix

In this appendix we derive the relation between the triplation in the image domain to its distribution in th
spectral domain. To simplify the notation we use 1D functions. The Fourier transform of the triplation
tion, given in eq. 5, is

C@)=F(eN)= [ [ 1(16r—7)gs(r-a7-b) exp(—iar) arar
= —J' drg, (r) exp(—i2mir) _[ dy&(v)gs[r(1—a)+ay—b] exp(i2nily)
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X Idygz(y)ga[r(l—a)ﬂy—b] exp(i2mity)
=- J drg,(r) exp(—i2mir) f duexp(i2mur) J dyg,(y) exp(i2nily)
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