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The reconstruction of partially occluded objects has been
a subject of research in recent years. Generally, one
wishes to see through a partially occluding plane in order
to get a clear image of a specific target object. In the last
decades, advancements in digital image sensors and com-
putation capabilities have yielded several opportunities to
tackle this problem, where most techniques involve the
sensing of the scene from different directions [1–4]. By
proper synthesis of the captured perspectives, the object
is recovered. Synthesizing different object perspectives to
reconstruct an object was also adapted to holography [5].
However, each perspective has degraded resolution com-
pared with the original hologram, which may impair the
overall performance of the method.
In this letter we offer a general technique to recover a

partially occluded object from its digitally recorded
single hologram using the compressive sensing (CS) ap-
proach. CS has already gained ground in the realm of
holography [6–10]. The CS approach asserts that given
the fact that a signal is sparse, or compressible in some
(known) transform domain, Ψ, it can be fully recovered
by taking only a subset of its measurements, using some
sensing operator, which should hold low coherence with
the sparsifying operator. Figure 1 depicts our basic setup:
a coherently illuminated object field, uin, with wave-
length λ, propagates a distance z1 and hits a partially oc-
cluding plane made of opaque and clear or scattering
regions, and is given by p�x�. This may be regarded as
a subsampling of the object’s Fresnel field; hence the
motivation of using the compressive Fresnel holography
approach. The wavefield than propagates another
distance z2 and interferes with a reference wave on a
CCD. The object’s field, uccd�x�, can be extracted using
standard techniques, such as filtering out the unwanted
diffraction terms [11], and is described by

uccd�x� �
�
uin �

exp�jπx2∕�λz1���������
λz1

p p�x�
�
� exp�jπx2∕�λz2���������

λz2
p :

(1)

For simplicity, we derive our equations for a one-
dimensional (1D) system. Equation (1) is often described
in CS literature as a vector-matrix multiplication form:

uccd � Φuin; (2)

where Φ denotes the sensing matrix.

In [9] we have determined reconstruction guarantees
when the Fresnel transform is used as a compressive
sensing mechanism, where the hologram plane is sub-
sampled. Therefore, it can be viewed as the scheme in
Fig. 1, with z2 � 0 and p�x� binary with its 1s and 0s as-
signed uniformly at random. Here, we consider realistic
general occluding planes; thus, we allow p�x� to receive
any value between 0 and 1 and also allow deterministic
structures as well. Often, CS literature deals with nonran-
dom subsampling schemes by analyzing the sensing
matrix columns coherence [12], given by

μ � μ�Φ� � max
m≠l

jhϕm;ϕ�
l ij∕f‖ϕm‖2‖ϕl‖2g; (3)

where ϕl denotes the lth column vector ofΦ. The smaller
μ is, the fewer samples are needed in order to accurately
reconstruct the signal [12]. We note that the second pro-
pagation along z2 can be expressed as a unitary trans-
form, which does not subsample the signal and has no
effect on the coherence of the sensing system (though it
may have a preconditioning effect on the system [13]).
Therefore, we may analyze the coherence of the sensing
operator from two subsampled fields originated from two
different source points,m and l, and hitting the occluding
plane as follows:

μ � max
m≠l

jh~ϕm; ~ϕ�
l ij∕f‖~ϕm‖2‖~ϕl‖2g; (4)

where

~ϕl � δ�x − l� � exp�jπx2∕�λz1��∕
�������
λz1

p
p�x�: (5)

In digital holography the signal is reconstructed using
numerical backpropagation, which is normally carried
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Fig. 1. (Color online) A schematic setup for a partially
occluded object’s wavefield acquisition.
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out by the far-field (direct method) numerical approxi-
mation or near-field (convolution method) numerical
approximation [11,14]. Following the approach in [9], de-
finingΔxo as the object’s pixel pitch, Δxz1 as the occlud-
ing plane pixel pitch, and N as the number of pixels, the
far-field numerical approximation is given by

~ϕl�qΔxz1� �
1�������
λz1

p p�qΔxz1�e
jπ
λz1

�lΔxo−qΔxz1�2

� 1�������
λz1

p p�qΔxz1�e
jπ
λz1

�lΔxo�2e
jπ
λz1

�qΔxz1�2e−
j2π
λz1

lqΔxoΔxz1 ;

(6)

where 0 ≤ l ≤ N − 1. Substituting Eq. (6) in Eq. (4) we
find that μ for the far-field numerical approximation is
given by

μFF � max
m≠l

1
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where ͡ P � Ffpg, F is the discrete Fourier transform,⊗ is
the correlation operator, and FF stands for far field.
As for the near-field numerical approximation where

the diffraction is small and Δxo � Δxz1, we obtain
from [14]:

~ϕl � p�qΔxo�F−1fexpf−jπλz1�nΔυ�2gFfδ��s − l�Δxo�gg

≈ e−j
π
4
Δxo�������
λz1

p p�qΔxo�e
jπ
λz1

Δx2o�q−l�2rect
��q − l�NΔx2o
λz1�N − 1�

�
;

(8)

where n; s � 0; 1; 2;…N − 1 and Δυ � 1∕�NΔxo�. By
substituting Eq. (8) into Eq. (4) we get

μNF ≈max
m≠l

����Δx2o
λz1

XN
q�1

jp�qΔxo�j2rect
��q− l�NΔx2o
�N −1�λz1

�

×rect
��q−m�NΔx2o
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�
e−j2π
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q�m−l�
����∕‖~ϕm‖2‖ϕl‖2: (9)

The result of Eq. (9) depends on the object’s Fresnel
number, which dictates the width of the two rectfg func-
tions and the structure of the occluding plane, p. In gen-
eral, an analytical result cannot be obtained, and each
case should be considered separately. However, in the
case that the occluding plane is composed from binary
entries generated uniformly at random, we have shown
in [9] that μFF≤μNF. Empirically, we have witnessed that
μFF≤μNF in numerous numerical experiments we have
performed.

In order to demonstrate the dependence of μ on the
occluding structure, we have created two 128 × 128 ran-
dom binary masks, where 80% of the pixels are opaque.
The first subsampling mask was composed from 2 × 2
opaque patches [Fig. 2(a)], where the second was com-
posed from 8 × 8 opaque patches [Fig. 2(c)]. From Figs. 2
(b) and 2(d) we witness that μFF increases as the size
of the patches increase. This was also verified with a nu-
merical simulation with different occluding planes and
subsampling ratios, with the results shown in Fig. 3.
The occluding planes were composed from different
sizes of opaque squares (1 × 1, 8 × 8, 16 × 16, and
32 × 32 pixels). The object was the 256 × 256 Lena image,
and we have chosen parameters such that the numerical
far-field approximation model is valid. After simulating
both field propagations, signal reconstruction is obtained
by solving the following problem:

min‖Ψuin‖1 � αTV�uin� s:t: ‖uout −Φuin‖2 < ε; (10)

where TV is the total variation functional [6–9,12]. We set
the estimated noise level with ε; Ψ is the sparsifying
operator, which in our case was the Haar wavelet trans-
form; and α is a regularization parameter. In order to
solve the problem formulated in Eq. (10) we have used
the SolveTV solver [12,15]. A successful image recon-
struction threshold was set to 30 dB PSNR. From Fig. 3
it is evident that the reconstruction success drops as the
occluding plane is getting more structured and μ increases.

We have also validated the applicability of the method
by an experiment. An Edmund Optics 1951 U.S. Air Force
(USAF) transmission resolution chart was illuminated
using a collimated HeNe laser beam with wavelength
of 632 nm. As a partially occluding object we have used
a twisted, blackened barbed wire. The distance between
the object and occluding plane was approximately 10 cm.
An f � 250 mm lens was used in order to increase the
field of view. It was set 12 cm away from the occluding
barbed wire and 40 cm from an Allied Vision Tech. Manta
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Fig. 2. (Color online) (a), (c) Partially occluding planes. (b),
(d) Corresponding cross sections of jhϕm;ϕ�

l ij∕f‖ϕm‖2‖ϕl‖2g,
of (a) and (c), respectively. μFF is marked with a dotted line.
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G-145 CCD camera with 1390 × 1038 pixels and pixel size
of 6.45 μm. This setup yields a reconstruction distance of
z1 ≈ 4 cm, which corresponds to a numerical near-field
approximation regime [9]. An off-axis holography setup
was used with a slightly tilted reference wave. Prior to
the reconstruction stage the unwanted orders were fil-
tered out. By focusing on the occluding plane, p, we have
found μNF ≈ 0.175, where approximately 59% of the object
field is obscured by the occluding plane. Generally, a
joint estimation of both signal and system is a nontrivial

problem requiring a priori information. In our case we
assumed that the occluding plane, p, can be modeled as
a binary function (because we expect no light has passed
through the wires) with completely unknown spatial dis-
tribution. This a priori knowledge enabled the estimation
of the occluding plane using a thresholding procedure.

Figures 4(a) through 4(j) show the reconstruction re-
sults. It is evident that the reconstruction with the sug-
gested CS-based approach reveals details that are lost
in the reconstruction with numerical backpropagation.

In conclusion, we have analytically derived reconstruc-
tion bounds for a partially occluded Fresnel field when
applying the CS framework. These results are a general-
ization of previous results [9]. We then demonstrated by
simulations and an experiment the effectiveness of using
the CS framework for the reconstruction of partially oc-
cluded objects from their hologram recording. The object
reconstruction is owed to the holographic acquisition
process, which allows the sensing of the object’s partially
occluded field using a single shot. This would otherwise
be impossible with a respective incoherent imaging sys-
tem, which uses a single shot and a single aperture.
Further future works can generalize the concept to 3D
obstacles or compensate for the occluding plane’s mea-
surement uncertainties, which is essential for successful
reconstruction.
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Fig. 3. (Color online) Reconstruction PSNR as a function of
occluding percentage for occluding planes with different square
sizes, which yield different μFF.
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Fig. 4. (Color online) (a) Reconstruction of the USAF chart
without the occluding plane, using standard Fresnel backpropa-
gation, for reference. (b) Focusing on the occluding plane, from
which the occluding function was extracted from. (c) Same as
(a), but this time the occluding plane distorts the reconstructed
object plane. (d) Same experiment as (c), but applying the CS
framework to reconstruct the object plane. (e), (f), and (g) zoom
in on the highlighted parts of (a), (c), and (d) respectively. (h),
(i), and (j) correspond to the highlighted cross sections of (e)–
(g).
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