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Recent advances in Fresnel incoherent correlation holography (FINCH) increase the signal-to-noise ratio in holo-
gram recording by interference of images from two diffractive lenses with focal lengths close to the image plane.
Holograms requiring short reconstruction distances are created that reconstruct poorly with existing Fresnel propa-
gation methods. Here we show a dramatic improvement in reconstructed fluorescent images when a 2D Hamming
window function substituted for the disk window typically used to bound the impulse response in the Fresnel
propagation. Greatly improved image contrast and quality are shown for simulated and experimentally determined
FINCH holograms using a 2D Hamming window without significant loss in lateral or axial resolution. © 2013
Optical Society of America
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(090.2880) Holographic interferometry; (100.6890) Three-dimensional image processing; (110.0180) Microscopy.
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In Fresnel incoherent correlation holography (FINCH)
[1–3], light emitted from an object point is split into
two spherical waves and then caused to overlap and in-
terfere at a detection plane, creating a self-referenced
Fresnel hologram that consists of the sum of all the
Fresnel patterns from all mutually incoherent point
sources in the hologram. The recorded digital hologram
is then processed computationally by Fresnel propaga-
tion to reconstruct an image of the original object scene.
Given the potential to achieve super-resolved images of
three-dimensional (3D) objects in few exposures [4], it is
critical to ensure that the processing algorithms and re-
cording conditions are optimal. Until recently, most
FINCH holograms have had long reconstruction distan-
ces due to the relative curvatures of the two spherical
waves and the minimum curvatures enabled by the holo-
gram-forming optical element [3–5]. In these earlier
FINCH implementations [Fig. 1(a)], one spherical wave
had a very long focal length f d2 approaching infinity,
while the other had a shorter focal length f d1 of generally
200 mm or more [3–5]. Meanwhile, the detection device
(CCD/CMOS camera) was placed at distance zh, roughly
twice the shorter focal length, resulting in a
reconstruction distance magnitude of zr � jf d1 − zhj, of
at least 200 mm. Now the use of spherical waves of sim-
ilar curvatures [6–9] in FINCH improves the signal-
to-noise (S/N) ratio. In the newer configuration [see
Fig. 1(b)] the reconstruction distance has magnitude
zr � j�f d1 − zh� · �f d2 − zh�∕�f d2 − f d1�j, which can easily
be 10 mm or less. In fact, it is predicted [6] that there
are upper and lower limits to the separation between
f d1 and f d2, beyond which the hologram quality is
degraded; so there is incentive to keep the separation
and therefore reconstruction distance as close as
possible to the lower limit. In examining FINCH holo-
grams created with closely spaced lens patterns, we
observed defects in reconstructed images, including poor

contrast, significant amounts of noise and spurious back-
ground signal, as well as contrast reversal. Defects of
the same type were found consistently at given
reconstruction distances, regardless of the quality of
the raw hologram or the conditions under which it
was recorded, suggesting that these defects were due
to the reconstruction process and not due to experimen-
tal factors. In this Letter, we show that changing the
apodization function of the hologram reconstruction
point-spread function (PSF) from a disk window to a
Hamming window [10] faithfully restores the image
planes throughout the reconstructed volume with
smooth transitions between planes similar to what is
seen in a conventional optical system. Evaluation of six
different window functions revealed that the Hamming
window function is the optimal choice to increase final
image quality with minimal effect on resolution.

Fresnel propagation [11] is a process of convolving a
recorded pattern g�x; y� (in this case a FINCH hologram)

Fig. 1. (a) and (b) Formation and reconstruction of single-
point holograms (PSFs) in two FINCH configurations. Objective
lenses and other ancillary optics are omitted. (a) Plane and
spherical wave and long reconstruction distance. (b) Two
spherical waves at the same camera distance but a much
smaller recording PSF and shorter reconstruction distance.
SLM, spatial light modulator; f d1, signal beam focal length;
f d2 reference beam focal length; zh, SLM-detector distance;
jzr j, reconstruction distance. (c) Example profiles of disk
and Hamming window functions.
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with a holographic PSF h�x; y; z� (referred to here as
PSFH) calculated for optical propagation over a defined
distance z to produce a reconstructed image u�x; y; z� at
distance z. Computationally, it is performed as in Eq. (1):

u�x; y; z� � jF−1
2DfF2D�g�x; y�� × F2D�h�x; y; z��gj; (1)

where F2D stands for the 2D Fourier transform (FT), F−1
2D

stands for the 2D inverse FT, and the PSFH is a Fresnel
phase pattern given by

h�x; y; z� � exp
�
iπ
λz

�x2 � y2�
�
: (2)

In the computation, the hologram andPSFH are contained
in rectilinear arrayswith dimensions corresponding to the
detector pixel countNd andmust be ofmatching size. One
consideration in using the PSFH above is the need to
ensure that it is always sampled appropriately above
the Nyquist limit, since an undersampled Fresnel pattern
would give rise to spurious features in the image. It should
benotedhere that all FINCHoptical schemes aredesigned
so that the raw hologram is recorded above the Nyquist
sampling rate. For a given wavelength λ, distance z,
and pixel size Δ, the minimum number of pixels Nmin
required to sample the PSFH above the Nyquist
sampling rate is given by Eq. (3):

Nmin � λz∕Δ2: (3)

It can readily be seen that for common scientificCCDcam-
eras with pixel size � ∼7 μm, and at a wavelength of
∼550 nm, the PSFH for distances of hundreds of mm will
fill an array equal in size to the detector array used to rec-
ord the raw hologramwithout undersampling (Nd < 2000
pixels, generally). Thus if the arrays to be convolved are
the same size, there is no obvious need to pad or truncate
either array to match sizes.
This is not so with PSFH for much smaller zr on the

order of 10 mm, in which cases the useful information
in the PSFH is limited to a radius of pixels equal to
Nmin. In such cases, some or most of the PSFH array
is zero-valued once the PSFH is truncated for a sampling
rate below the Nyquist limit. This truncation can be per-
formed by multiplying a disk window function of diam-
eter of 2Nmin into the PSFH as an amplitude:

h�nx; ny; z� � wd�nr;Nmin� × exp
�
iπΔ2

λz
�n2

x � n2
y�
�
; (4)

wherenr � roundj
�����������������
n2
x � n2

y

q
j, �nx; ny� � �x∕Δ; y∕Δ�, and

wd�nr;Nmin� �
�
1; nr ≤

Nmin
2

0; otherwise
: (5)

Note thatwd�nr;Nmin� is dependent on the reconstruction
distance z through Nmin and Eq. (3). However, use of the
diskwindow leaves a sharp discontinuity in the PSFH , and
theFTof thePSFH displays undesirable features including
high levels of sidelobes. When the reconstructed image is
viewed, these spurious PSFH features induce the negative
effects detailed above. These observations are all consis-
tent with the analogous detrimental effects of rectangular

windowing in 1D Fourier analysis in, for example, audio-
frequency analysis [12].

To address this problem, it is useful to extend the anal-
ogy of audio-frequency analysis: we consider the PSFH as
the recorded signal, which is subject to a window func-
tion prior to Fourier analysis. A number of window func-
tions may be used instead of a rectangular function to
increase the signal level of the desired frequencies of
the recorded function relative to the spurious, undesired
frequencies [13]. We examined the following window
functions: the exact Hamming, the four-term (−92 dB)
Blackman–Harris, Gaussian, the Dolph–Chebyshev, the
Tukey (all as described in [13]), and the Planck-taper
window [14]. The Hamming window is designed to min-
imize the first sidelobe in the FT with minimal broaden-
ing of the central peak, while the Blackman–Harris is
designed to minimize all sidelobes in the FT. The Gaus-
sian and Dolph–Chebychev windows may be adjusted by
changing the exponent and desired sidelobe suppression,
respectively, and the Tukey and Planck windows are
both piecewise functions of disk windows at the center
of the window and tapering functions near the radius of
the window, with the proportion of disk to taper con-
trolled by a parameter. We leave the equations for the
window functions in the references listed, with the ex-
ception of the exact Hamming window wH�nr;Nmin�,
which we include as an example:

wh�nr;Nmin� �
(
α − β cos

�
2π
�
nr−

Nmin
2

�
Nmin

�
; nr ≤

Nmin
2

0; otherwise
;

(6)

where α � 25∕46 and β � 21∕46, values that minimize
the first sidelobe in the transform of the window [13].
Both wd and wh (and any other window function) are de-
pendent on the reconstruction depth z.

To study the effects of the various PSFH windows on
image resolution, a simulated hologram was used as a
model for a point object. An array of 1024 × 1024 pixels
was used, with the input beam into the FINCH system
represented as a circularly bounded, uniformly intense
plane wave, i.e., all pixels with nr < 512 were given
a value of 1. The hologram was calculated modeling
the newer FINCH implementation with zh �
1.2 · f d1 � 0.8 · f d2, which resulted in a short recon-
struction distance, and then reconstructed with all of
the PSFH , and the amplitudes of through-focus
reconstruction sequences were used to generate theoreti-
cal image point spread functions (PSFI). The transverse
amplitude profiles from each step of a through-focus
reconstruction sequence at the index of the peak in
the focused image were used as the xz, PSFI , while trans-
verse profiles were taken from the focused images to give
the xy, PSFI . Representative images of PSFI and profiles
are shown in Fig. 2 for the disk and Hamming windows.
In Figs. 2(c) and 2(d), it is shown that the z and xy res-
olution when using hh is slightly broadened (by 5% and
8%, respectively), while the nearest sidelobes of the xy
profile were reduced 40% in integrated intensity over
the neighboring six pixels by the Hamming window func-
tion. These factors vary with the other window functions,
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as shown in Table 1 showing the PSFI widths resulting
from various windows, normalized to the PSFI width re-
sulting from the disk window.
At-focus reconstructed images were also calculated for

a set of experimental holograms using the various win-
dow functions. All of the images calculated using the
nondisk window functions showed some contrast
improvement over the one calculated using the disk
window, with the exception of the Tukey and Planck
windows with taper values of 1 and 0, respectively, which
are simply disk windows.

A representative sample of these improved images, cal-
culated using the disk and Hamming windows, is shown
in Figs. 3(a)–3(d). The improvements due to the Ham-
ming PSFH window function are quite clear, as the
raw hologram was the same in both cases, and the only
difference between the two images is the PSFH that was
used. An image reconstructed with the disk-windowed
PSFH (hd) is noisy enough to partially obscure some fea-
tures and has an uneven intensity across the image
[Figs. 3(a) and 3(c)]. The Hamming-windowed PSFH
(hh) resulted in significantly reduced noise and spurious
background and more even intensity in reconstructed im-
ages [Figs. 3(b) and 3(d)]. The improvement by using the
Hamming window does not come at significant cost in
lateral or axial resolution, as indicated in Fig. 3(e), which
shows that the visibility [4] of the smallest features (as a
stand-in for modulation transfer function) remains the
same (within measurement error) for both disk and
Hamming window calculations.

The defects using the disk window vary from image to
image within a reconstruction sequence. A further dem-
onstration of this, in a biological sample, is in Fig. 4,
showing reconstructed images of pollen grains at three
planes. One of the images [Fig. 4(a)] produced with hd
is barely recognizable as a pollen grain, while a second
[Fig. 4(b)] is fairly clear, while a third has a significant
halo-like background [Fig. 4(c)]; it is difficult to
understand what the images show. By comparison, the
corresponding images [Figs. 4(d)–4(f)] produced from
the same hologram with hh are all recognizable as images
of the pollen at different focus as seen in a standard
optical system. Intensity profiles [Figs. 4(g)–4(i)] through
three spines of the pollen calculated using the disk (red
lines) and Hamming window function (blue lines) quan-
titatively demonstrate the improved image quality and
background suppression at all planes of focus when us-
ing the Hamming window. The complete reconstructed
series of 100 planes each for hd and hh is online.

Fig. 2. (a) Calculated xz PSFI of the reconstructed image of a
single point through focus, reconstructed with disk-windowed
PSFH hd. (b) xz PSFI calculated using the Hamming-windowed
PSFH hh. (c) z-profiles through peak pixel of reconstructions,
serving as a measure of relative z resolution. (d) xy profiles of
the reconstructions at best focus.

Table 1. Normalized Image Point-Spread Function

(PSFI) Widths for Windowed Holographic Point-Spread

Functions (PSFH)

PSFH Window

Lateral (xy)
PSFI Width
(Normalized)

Axial (xz)
PSFI Width
(Normalized)

Disk 1 1
Hamming 1.08 1.05
Gaussian (exponent 2.5) 1.08 1.08
Gaussian (exponent 3.5) 1.23 1.23
Blackman–Harris 1.25 1.25
Dolph–Chebyshev
(parameter 3)

1.10 1.06

Dolph–Chebyshev
(parameter 4)

1.17 1.14

Tukey (parameter 0) 1.25 1.06
Tukey (parameter 0.1) 1.08 1.06
Tukey (parameter 0.5, 0.9, 1)a 1 1
Planck (parameter 0, 0.1) a 1 1
Planck (parameter 0.5) 1.02 1.04
Planck (parameter 0.75) 1.17 1.21
Planck (parameter 0.9) 1.27 1.29
Planck (parameter 1) 1.33 1.35

aThe PSFI widths here are identical to that of the disk window because,
for these parameters, the functions create windows that are exactly or
nearly disk windows. The resolution is maintained, but the poor image
contrast and quality remain.

Fig. 3. In (a) and (b), respectively, FINCH reconstructions of
the same USAF pattern hologram recorded with dual-lens pat-
tern FINCH (from Fig. 7, top center in [8]), reconstructed with
the disk-windowed PSFH and with the Hamming-windowed
PSFH . Intensity profiles through the lines indicated are shown
in (c) and (d). (e) The visibilities of the Group 9 Element 3 bars,
as described in [8], from FINCH images of the sample above, at,
or below the objective focal plane. The images were recon-
structed with either the disk window (red, round points and
dashed line) or the Hamming window (blue square points, solid
line). The visibility of these features in ordinary wide-field
fluorescence microscopy is provided to show that the super-
resolving characteristics of FINCH are maintained when using
the Hamming window function.
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To provide a more quantitative comparison of the costs
and benefits of applying the various window functions,
we measured the contrast in the reconstructed images
by averaging the pixel intensities in the square feature
of USAF groups 8 and 9 and divided that by the average
pixel intensity in the void between groups 8 and 9. These
contrast values were then normalized to the contrast
value obtained using the disk window and were plotted
against the normalized PSFI widths (listed in Table 1) in
Fig. 5. It can be seen that the image contrast increases
with the PSFI width. We identified a group of window
functions that increased the lateral PSFI width by less
than 10%, a tolerable resolution loss, and which also in-
creased the contrast by at least a factor of 2, sufficient to
greatly improve image contrast and perceived quality as
well as eliminate contrast reversal and spurious back-
ground. These functions are identified in Fig. 5 quadrants
(i), showing that the use of these functions does not
adversely affect axial resolution more than lateral.
The functions represented in quadrant (i) are the exact
Hamming window, the Gaussian window with exponent
coefficient 2.5, the Dolph–Chebychev window with
parameter of 3 (sidelobe suppression of 30 dB in power),
and the Tukey window with taper values of 0 and 0.1.
Functions in quadrant (iii) resulted in better resolution
but unacceptably poor contrast, while those in quadrant
(ii) resulted in improved contrast but unacceptable loss
of resolution. Of the functions in quadrant (i), we chose
to use the exact Hamming window as it increases the
overall PSFI widths least of these functions.
The 5%–8% loss in maximum resolution when using the

Hamming-windowed PSFH is acceptable, given that the
images are so improved in other aspects. This is consistent
with Fig. 3, showing the significant improvement in im-
ages reconstructed from the experimental holograms in
[8] without significantly decreasing the visibilities of the
smallest features. This improvement is also seen in Fig. 4.
Our results show that use of a smoothly discontinuous
PSFH is critical in faithfully reconstructing FINCH

holograms at short distances and improves the utility of
the newly implemented FINCH configurations with small
differences between the two spherical waves. Further-
more, the Hamming window function might improve
the quality of the reconstructed images from any Fresnel
digital hologram, recorded coherently or incoherently.
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Fig. 4. Reconstructed images of pollen grains from holograms
captured with short reconstruction distance. (a)–(c) With disk-
windowed PSFH . (d)–(f) or Hamming-windowed PSFH . Images
39 [(a) and (d)], 46 [(b) and (e)], and 67 [(c) and (f)] of 100 re-
constructed sections from the same holograms are shown. Full
series is online (Media 1, top series Hamming window, bottom
series disk window). Intensity profiles through three spines at
three planes of focus (g)–(i) for disk window (red) or Hamming
window (blue).

Fig. 5. Contrast in at-focus reconstructed images plotted
against PSF width of the image. (a) Lateral (xy) PSFI . (b) Axial
(xz) PSFI . The dashed boxes denote a group of window func-
tions with roughly comparable performance. (a) Window func-
tion parameters in quadrant (i): Gaussian, 2.5; Dolph–
Chebychev, 3; Tukey, 0.1; (ii): Gaussian, 3.5; Dolph–Chebychev,
4; Tukey, 0; Planck, 1, 0.9, and 0.75; (iii): Tukey, 0.5, 0.9, and 1;
Planck, 0.5, 0.1, and 0. (b) Window function parameters in quad-
rant (i): Gaussian, 2.5; Dolph–Chebychev, 3; Tukey, 0 and 0.1;
(ii): Gaussian, 3.5; Dolph–Chebychev, 4; Planck, 1, 0.9, and 0.75;
(iii): Tukey, 0.5, 0.9, and 1; Planck, 0.5, 0.1, and 0.
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