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Incoherent digital holograms 
acquired by interferenceless coded 
aperture correlation holography 
system without refractive lenses
Manoj Kumar, A. Vijayakumar & Joseph Rosen

We present a lensless, interferenceless incoherent digital holography technique based on the principle 
of coded aperture correlation holography. The acquired digital hologram by this technique contains 

intensity this time is composed as the object hologram. The image of the object at any axial plane is 
reconstructed by cross-correlating the object hologram with the corresponding component of the 

reconstruction results of multiplane and thick objects by this technique are compared with regular lens-
based imaging.

Digital holography systems are found to possess various advantages compared to their regular imaging counter-
parts1–4, for instance, their inherent three-dimensional (3D) imaging capabilities. Contrary to regular imaging, 
digital holography is an indirect multi-step imaging process; recording the hologram of an object using an optical 
system in the first step, followed by digital processing and image reconstruction in the following steps5, 6. This 
indirect procedure offers a platform for various opportunities of signal processing7–10.

In the recent years, there has been an increasing interest among researchers in incoherent digital holography 
systems due to various benefits ranging from the use of low-cost light sources to enhancement in the image reso-
lution11–13. One such well-established incoherent digital holography system called Fresnel incoherent correlation 
holography (FINCH)14 makes use of the digital signal processing and self-referencing interference to achieve a 
lateral resolution beyond that of a conventional equivalent imaging system15. In FINCH, the light beam diffracted 
by the object is split into two; one beam passes through a quadratic phase mask while the other beam remains 
unmodulated and the two mutually coherent beams are interfered to create the hologram. The image is then dig-
itally reconstructed by imitating the well-known optical propagation operators. The lateral resolution of optimal 
FINCH15 is 2 times and 1.5 times higher than that of equivalent coherent and incoherent imagers, respectively. 
However, the axial resolution of FINCH is lower.

Another self-referenced interference based incoherent digital holography system called coded aperture cor-
relation holography (COACH) was developed to increase the axial resolution at the expense of some loss of the 
lateral resolution16. In COACH, the quadratic phase mask of FINCH is replaced by a random-like coded phase 
mask (CPM). The COACH lateral and axial resolutions are equivalent to that of a regular imaging system with 
the same numerical aperture (NA). However, unlike regular imagers, COACH system can grab the entire 3D 
visual information in three camera shots and the entire 3D data is compressed to a 2D digital hologram, which 
enables one to store, transfer, and process the data more easily. In COACH, two holograms are synthesized, one is 
created once in the training stage of the system for a point object and is called point spread hologram (PSH). The 
other, for an object, is termed object hologram whereas both the point and the object are located at the same axial 
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location and recorded with identical optical conditions. The object is reconstructed by a cross-correlation of the 
object hologram and the PSH. Therefore, for reconstruction of a multiplane, or 3D object, a library of PSHs are 
prerecorded at all possible axial locations and the visual information of the object at any plane can be accurately 
reconstructed by correlating the corresponding PSH with the object hologram. Lately, a modified COACH system 
for 3D imaging and simultaneous wavelength sensing was developed by amplifying the wavelength sensitivity 
with a diffractive objective lens17. In this case, the PSHs were cataloged for different axial locations and also for 
different wavelengths.

In this line of research, an interferenceless COACH (I-COACH) system was developed recently for 3D 
imaging without two wave interference18. This advancement has opened up many possibilities in the field of 
holography by defying one of the fundamental requirements of holography which is the use of interferometers. 
In I-COACH, the 3D visual information of the object is stored and retrieved without two-wave interference. 
Moreover, the interferenceless scenario simplifies the optical configuration, as cumbersome requirements are not 
needed to be satisfied. There is no need to isolate the system from external vibrations, it is not essential to align 
the optical system for precise overlap between the interfering beams, and the optical power efficiency becomes 
higher when the input beam is not split19, 20.

In this study, a further advancement in the interferenceless incoherent digital holography is proposed by 
demonstrating a lensless I-COACH (LI-COACH). In other words, we present a new lensless, interferenceless, 

Figure 1. Optical configuration of LI-COACH.

Figure 2. Block diagram of GSA to calculate the CPM.
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incoherent digital holography system for 3D imaging. Lensless imaging systems can offer aberration free imaging 
and, in particular, to solve problems associated with the manufacturing of objective lenses for telescopes and 
microscopes21, 22. This technique can be a benefit for telescopic and microscopy systems for visible as well as 
non-visible wavelengths for which fabrication of lenses and creating interference are challenging tasks. Lensless 
and interferenceless imaging systems have been already proposed by Chi et.al.23, 24 However, digital holograms 
of a 3D scene have not been recorded in their cases and their experimental results have had a high level of back-
ground noise because of lack of any noise reduction mechanism. Other closely related works propose various 
methods of the point spread function engineering for 3D imaging25–32. However, these works cannot record dig-
ital holograms of the 3D scene as LI-COACH offers. Lensless incoherent digital holography systems33, 34 with 
wave interferences developed in the past and the present study shows that lensless holographic 3D imaging can be 
done without two-wave interference. The optical configuration of LI-COACH is simple as a regular imaging sys-
tem but with the 3D imaging capability. As in the previous cases18, the 3D visual information of the scene is also 
compressed into a single 2D hologram. However, unlike the previous cases18, the present hologram is synthesized 
from two, rather than three, camera shots. Another advantage of the LI-COACH system is the increased field of 
view (in comparison to ref. 18) achieved because there is only a single optical component between the object and 
the digital camera.

Methodology
The optical configuration of LI-COACH is shown in Fig. 1. The light from an incoherent light source critically 
illuminates an object using a refractive lens L. Obviously, this illumination setup with the lens is not part of 
LI-COACH. The object can be illuminated by different illumination systems or can be a self-luminous object. 
The only condition which should be constrained is a complete spatial incoherence in the object space. The light 
diffracted by the object is modulated by a random-like CPM and reaches the image sensor on which the detected 
intensity pattern is recorded. The CPM in this case is designed using modified Gerchberg-Saxton algorithm 
(GSA)35 with Fresnel propagators instead of Fourier transforms like in the original GSA. The aim of the GSA is 
to reduce the background noise during the hologram reconstruction. Figure 2 shows the block diagram of the 
GSA to generate the CPM. In the beginning, a random phase Φ(x, y) is generated and multiplied with the diverg-
ing spherical wave (in the paraxial approximation) originated from a point object located on the optical axis at 
a distance zs from the CPM. After propagating from the CPM to the sensor plane using the Fresnel free-space 
propagator, the phase distribution of the obtained complex amplitude is extracted and the magnitude is replaced 
by a zero-padded uniform matrix. The zero-padded uniform matrix has been used to constrict the field diffracted 
from the CPM to have a uniform intensity over a limited area at the center of the sensor plane. The resulting com-
plex amplitude is back propagated to the CPM plane using the Fresnel back propagator. The phase of the complex 
amplitude is extracted and attached to a constant magnitude, for the next iteration. This cycle is repeated until 
the generated intensity profile at the sensor plane converges towards the constraint. The obtained phase from the 
GSA is multiplied with Q(-1/zs) in order to cancel the effect of input spherical wave phase Q(1/zs). In the current 
setup, 20 iterations were found to be sufficient as the decrease in the background noise value is negligible beyond 
the 20 iterations.

Figure 3. Experimental setup of LI-COACH with two illumination channels.
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In order to improve the signal to noise ratio (SNR) in the reconstruction plane, the autocorrelation of the PSH 
should be as close as possible to δ function. This is because the autocorrelation of the PSH is a reconstruction of 
a point object and a reconstruction of an arbitrary object is actually a collection of PSH autocorrelations shifted 
according to the locations of the object points. In order to obtain the PSH autocorrelation closest to δ function, 
the magnitude of the PSH spectrum should be as close as possible to a non-zero constant. However, any single 
intensity pattern cannot have a spectrum with a constant magnitude because of the intense peak in the center 
of the spectrum which is higher than all its surroundings. Therefore, at least two independent intensity patterns 
should be recorded corresponding to two different CPMs generated from two different initial independent ran-
dom phase masks. The Fourier transform of the subtraction between the intensity patterns can possess approxi-
mately a constant magnitude forced by the GSA. However, the present GSA is limited in achieving the ideal δ-like 
PSH autocorrelation, and the reconstructed image contains background noise due to the GSA limitations35. The 
phase-only filtering (POF) correlation technique and averaging technique were implemented in order to reduce 
the background noise further and to improve the SNR in the reconstructed image36. In the POF technique, the 
spatial spectrum of the object hologram is filtered with the POF. In the averaging technique, a collection of PSHs 
and object holograms using different CPMs are recorded. The resulting multiple complex reconstructed images 
are averaged to produce an image with an improved SNR17, 36.

The following analysis is based on the configuration of Fig. 1. The light diffracted from a point object with an 
amplitude of Is  located at =r z x y z( , ) ( , , )s s s s s  reaches the CPM with a complex amplitude Is  C1L(r z/s s)Q(1/zs), 
where C1 is a complex constant, L and Q represent linear and quadratic phase functions, given by 

π λ= ⎡
⎣⎢

+ ⎤
⎦⎥

− ( )L s z i z s x s y( / ) exp 2 ( ) x y
1  and π λ= +−Q a i a x y( ) exp[ ( )]1 2 2 , respectively. The complex amplitude after 

the CPM is given by Is  C1L r z( / )s s ∙Q(1/zs)∙ Φi rexp[ ( )]k , where Φ r( )k  is the k-th quasi-random phase CPM calcu-
lated using the modified GSA shown in Fig. 2 and k = 1,2. The complex amplitude at the image sensor is given by 
a convolution of Is  C1L r z( / )s s ∙Q(1/zs)⋅ Φ ¯i rexp[ ( )]k  with Q(1/zh). Therefore, the k-th intensity pattern on the image 
sensor is given by,

Figure 4. (a,b) Phase images of the CPM1 and CPM2; (c,d) intensity patterns of PSHs corresponding to 
CPM1 and CPM2 respectively; (e,f) intensity patterns of object holograms corresponding to CPM1 and CPM2 
respectively; (g,h) holograms of the pinhole and the NBS RC; (i) reconstructed image; (j) resultant image 
obtained after averaging over 20 LI-COACH reconstructed images; and (k) regular imaging.
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where the asterisk sign denotes a two-dimensional convolution and =r u v( , )0  is the transverse location vector 
on the sensor plane. The second equality of Eq. (1) indicates that the intensity on the sensor plane is a shifted 
version of the intensity response for a point object located on the optical axis =r( 0)s , where the distance of the 
shift is rs zh/zs.

A 2D object in the object plane can be considered as a collection of N object points given by

∑ δ= −( )o r a r r( )
(2)

s
j

N

j s j,

When the object is illuminated by an incoherent quasi-monochromatic light source, there is no interference 
between the various responses of the form given by Eq. (1). Hence, the overall intensity distribution on the sensor 
plane is a sum of the responses of the individual points, given by,

Figure 5. Plot of average background noise on the reconstructed images averaged over different numbers of 
CPM pairs.

Figure 6. Normalized intensity of reconstruction/imaging at (x = 0, y = 0) versus the axial distance of the 
pinhole from the back focal plane of the lens L1.
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Both I r z( ; )OBJ k s, 0  and I r z( ; )k s0  are real positive quasi-random functions. The recovery of the image can be 
performed by a cross-correlation between I r z( ; )k s0 , the intensity response to a point, and I r z( ; )OBJ k s, 0 , the intensity 
response to the object. However, a cross-correlation between two real positive yields undesired background dis-
tribution on the recovered image. The condition that can minimize the background is that the autocorrelation of 
the PSH should be as close as possible to the δ function. From the convolution theorem, this condition can be 
satisfied if the magnitude of the Fourier transform the PSH is uniform and equal to some constant greater than 
zero. This property cannot be achieved with real positive PSH because of the value at the origin of the spectrum 
which is much intense than any other value. Only a superposition of K ≥ 2 intensity responses can approximately 
satisfy the constraint of the uniform spectrum. In the previous case18, a superposition of three (K = 3) intensity 
responses was used. Here we show that K = 2 is enough to yield acceptable results, with relatively high SNR, if one 
intensity is subtracted from the other. This result is obtained because the averages of both intensities are approxi-
mately the same and hence the subtraction minimizes the average of the PSH such that the magnitude of the PSH 
spectrum can be closer to a uniform value. Therefore, in order to minimize this background distribution both 
H r z( ; )PSH s0  and H r z( ; )OBJ s0  the PSH and the object holograms, respectively, are calculated as follows,

= −H r z I r z I r z( ; ) ( ; ) ( ; ) (4)PSH s s s0 1 0 2 0
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The background noise can be minimized if the autocorrelation of PSH yields a function close to a delta func-
tion with minimum side lobes. This condition is achieved using the modified GSA by having a uniform intensity 
on the CPM plane and on the sensor plane inside a predefined area. As mentioned above, the spectral constraint 
of the PSH can be satisfied by choosing K = 2 and subtracting one intensity pattern from the other. Therefore, two 
intensity patterns are recorded for both the object and the point object using two CPMs calculated with different 
initial random phases.

The image is reconstructed by correlating H r z( ; )OBJ s0  with H r z( ; )PSH s0  as follows,
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where Λ is a δ-like function, ~1 at (0,0) and ~0 elsewhere. It must be noted that the image is reconstructed using 
the cross-correlation [Eq. (6)]. Therefore, the transverse and axial resolutions are dictated by the transverse and 
axial correlation lengths, determined by the width and the length of the smallest spot that can be recorded on the 

Figure 7. Normalized intensity of the lateral profile of the reconstruction/imaging of two-point object at the 
back focal plane of the lens L1.
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sensor plane by the spatial light modulator (SLM) with an active area of diameter of D, or by the width of the pin-
hole d that is actually used to record the PSH. Hence, the transverse and axial minimal resolved sizes are approx-
imately Max{d,1.22λzs/D} and Max{8d2/λ,8λ(zs/D)2}, respectively, which is the same as that of regular imaging 
with the same NA. The magnification of the imaging system implied from Eq. (6) as MT = zh/zs.

Figure 8. Experimental comparison results of regular imaging and LI-COACH holograms recorded for a two-
plane object made up of the NBS RCs by placing the NBS1 and NBS2 RCs in two lateral planes.
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The LI-COACH system with two illumination channels is experimentally demonstrated using the digital holog-
raphy setup shown in Fig. 3. The experimental setup consists of two light emitting diodes (LEDs) (Thorlabs 
LED631E, 4 mW, λ = 635 nm, Δλ = 10 nm) mounted on two illumination channels. Two identical lenses, L1 and 
L2, were used to illuminate the objects in channel 1 and channel 2, respectively. The distance between the lenses 
L1 and L2 and the respective objects is 18 cm. Two negative National Bureau of Standards (NBS) (NBS 1963A 
Thorlabs) resolution charts (RCs) were used as objects and are mounted in channel 1 and 2. Element 5.6 lp/mm of 
NBS1 RC mounted in channel 1 and elements 6.3 and 7.1 lp/mm of NBS2 RC mounted in channel 2 were critically 
illuminated. The light diffracted by the two objects (NBS1 and NBS2 RCs) were combined using a beam splitter 
BS1. The combined beams pass through the polarizer P, oriented along the active axis of SLM (Holoeye PLUTO, 
1920 × 1080 pixels, 8 μm pixel pitch, phase-only modulation) in order to enable full modulation of the light. An 
iris with a radius of 0.8 cm was mounted just before the SLM to control the size of the NA. The NA of the illumina-
tion system is approximately 0.016 (NA = D/2zs, where D is the diameter of the aperture D = 0.8 cm; zs = 26 cm). 
The potential minimum resolved element has the width of about 25 μm (0.61λ/NA) and the length of 5.4 mm [2λ/
(NA)2]. A pinhole with a diameter of ~100 μm was used as the point object in channel 1. The maximum lateral 
resolution (25 μm) achievable with the current optics configuration is sacrificed by using a larger pinhole (100 
μm) in order to achieve a detectable optical power at the image sensor while recording the PSHs. Two different 
CPMs generated from two different initial random phase masks calculated by GSA were displayed on the SLM 
with 1080 × 1080 pixels and two intensity patterns corresponding to these two CPMs were recorded by CMOS 
camera [pco.edge 5.5 scientific CMOS (sCMOS), 2560 × 2160 pixels, 6.5 μm pixel pitch]. The distance between 
the objects (NBS1 and NBS2 RCs) and the SLM was zs = 26 cm. The distance between the SLM and the camera 
was zh = 26 cm. In the same experimental setup, regular imaging was carried out by displaying a diffractive lens 
with a focal length f = (1/zs + 1/zh)−1 on the SLM.

To investigate LI-COACH, various experiments were carried out with the optical setup of Fig. 3. In the first 
experiment, 40 different CPMs were synthesized and the corresponding intensity patterns were recorded using 
the pinhole mounted at the back focal plane of the lens L1 in channel 1 and blocking channel 2. From the 40 
intensity recordings, 20 PSHs were synthesized by subtracting every two intensity patterns. Similarly, 40 intensity 
patterns were recorded by replacing the pinhole by the NBS object (5.6 lp/mm) and 20 object holograms were 
synthesized using the intensity patterns from the same CPM pairs as used for the PSHs. The image of the object 
is reconstructed by a cross-correlation of the object hologram and the PSH. The complex distributions of the 
different reconstructions were averaged to minimize the background noise.

Phase images of one pair of CPMs, corresponding to k = 1 and k = 2, are given in Fig. 4(a) and (b). Two inten-
sity patterns of the pinhole (IPSH1 and IPSH2) and two object intensity patterns (IObject1 and IObject2) of the element 
5.6 lp/mm recorded with the same CPM pair are shown in Fig. 4(c,d) and (e,f), respectively. The two intensity 
patterns IPSH1 and IPSH2 were subtracted one from the other to obtain a point spread hologram (HPSH). Similarly, 
an object hologram (HOBJ) is obtained by subtracting two object intensity patterns (IObject1 and IObject2). The images 
of the PSH and the object hologram are shown in Fig. 4(g) and (h), respectively. The reconstructed image of the 
NBS object from a single hologram is shown in Fig. 4(i). This result was obtained by a cross-correlation of the 
object hologram and the POF version of the PSH, both are synthesized from the same CPM pair. Finally, the 

Figure 9. Experimental setup of LI-COACH for imaging reflective 3D object.
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20 reconstructed images were averaged and the resulting reconstructed image is shown in Fig. 4(j). The regular 
image of the object was recorded by the CMOS camera by coding the SLM with a diffractive lens of focal length 
f = (1/zs + 1/zh)−1. Figure 4(k) shows the regular imaging for the element 5.6 lp/mm of the NBS object. The aver-
age background noise on the reconstructed images for different numbers of CPMs were calculated and plotted in 
Fig. 5. It is observed that the background noise decreases over the reconstruction plane with the increase in the 
number of CPMs, and become almost constant for averaging over 20 CPM pairs.

In the next experiment, the axial and lateral distribution of imaged pinholes from the LI-COACH system and 
from the regular imaging system were measured and compared. The axial location of the pinhole was varied from 
−28 mm to + 28 mm with respect to the back focal plane of lens L1 and the corresponding PSHs were recorded 
at every location of the pinhole. The reconstructed images were obtained by correlating the recorded PSHs with 
the PSH recorded for the pinhole at the back focal plane of the lens L1. The intensity of the reconstructed images 
at (x,y) = (0,0) were measured and plotted against the axial locations of the pinhole. In the case of regular imag-
ing, for every axial location of the pinhole, the image of the pinhole was recorded and the image intensity at 
(x,y) = (0,0) was measured and plotted. Figure 6 shows the plots of the intensity values of reconstruction/imaging 
at (x,y) = (0,0) resulting from LI-COACH and regular imaging. The similarity between the two axial distributions 
indicates the resemblance in the axial resolution of the two imaging methods.

The lateral distribution of imaged points by the LI-COACH is measured and compared with the regular imag-
ing by placing a two-point object with diameters larger than the diameter of the pinhole (100 μm) at the back 
focal plane of the lens L1. To obtain the reconstructed image, the recorded hologram of the two-point object was 
correlated with the PSHs prerecorded with the pinhole at the back focal plane of the lens L1. The intensity of the 
reconstruction/imaging of the two-point object is plotted in Fig. 7.

Figure 7 indicates that the lateral resolution as well as the image magnification of LI-COACH, are about the 
same as that of the regular imaging system.

In the third experiment, a library of PSHs were created by moving the pinhole to 17 axial locations (−40 to 
+40 mm) in steps of 5 mm with respect to the back focal plane of the lens L1 in channel 1. Forty intensity patterns 

Figure 10. Regular imaging and reconstruction results of LI-COACH of the different planes of the set of two 
LEDs separated by a distance of 15 mm.

Figure 11. Regular imaging and reconstruction results of LI-COACH of the different planes of the set of two 
one-dime coins separated by a distance of 15 mm.
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were recorded at every axial location corresponding to the 20 CPM pairs synthesized using the GSA and com-
posed them into 20 PSHs for averaging. So the library consists of 340 elements i.e., 20 PSHs at every axial location 
for 17 axial planes. Two NBS RCs were mounted in the two channels and the object holograms were recorded. It 
should be noted that both the NBS RCs were aligned in such a way that the element 5.6 lp/mm of the NBS1 RC 
and elements 6.3 and 7.1 lp/mm of NBS2 RC can be imaged onto the camera without lateral overlap. Next, the 
axial location of NBS1 RC was varied from −40 to +40 mm, in steps of 5 mm, with respect to the back focal plane 
of the lens L1, while the axial location of the NBS2 was constant. Object intensity patterns of the two-plane object 
were recorded corresponding to the same CPMs used for recording PSHs. The different planes of the object are 
reconstructed by correlating the corresponding PSHs from the library. The regular imaging and reconstruction 
results of LI-COACH for the two-plane object after averaging over 20 independent reconstructions are shown 
in Fig. 8. The experimental results reveal that the performance of the proposed LI-COACH is similar to that of 
regular imaging.

In the last experiment, the imaging of 3D objects constructed from two identical LEDs (LED-A and LED-B) 
and two one-dime coins (coin 1 and coin 2) both are separated by an axial distance of 15 mm is carried out. The 
experimental setup was then modified such that the 3D object can be illuminated critically in reflection mode by 
the illumination system in channel 2 using a different biconvex lens of focal length of 88.30 mm in order to obtain 
a larger illumination area on the surface of the 3D object. Figure 9 shows the modified experimental setup for 
imaging the 3D object in reflection mode. Once again 40 intensity patterns of the 3D object were recorded and 
composed into 20 object holograms, corresponding to the same CPM library used for recording the PSHs. The 
correlation of the synthesized complex holograms with the PSH libraries prerecorded at the back focal plane of 
the lens L1 and at zs = −15 mm, reconstructs the information in the respective object planes. Figure 10(a) shows 
the regular imaging of the 3D object in which LED-B is focused and LED-A is out-of-focus, whereas in Fig. 10(b) 
LED-A is focused and LED-B is out-of-focus. The reconstruction results of LI-COACH obtained by correlations 
with the corresponding prerecorded PSHs, and after averaging over 20 independent reconstructions, are shown 
in Fig. 10(c) and (d) respectively. Figure 10(e) shows the photograph of the two LEDs system separated axially by 
15 mm. Similarly, Fig. 11 shows the reconstruction results of LI-COACH after averaging over 20 reconstructions, 
regular imaging and the photograph of two one-dime coins system.

In conclusion, we have proposed and demonstrated a new inteferenceless and lensless incoherent digital hologra-
phy system termed LI-COACH which provides 3D imaging without using any lens. LI-COACH is superior to its 
precursors namely COACH and I-COACH owing to its compact lensless optical configuration. Nonetheless it has 
similar lateral and axial resolutions dependent upon the NA of the optical system or the diameter of the training 
pinhole. The study demonstrates that in the case of indirect imaging one is not restricted to any conventional 
optical element like a lens or spherical mirror. A set of synthesized random-like phase masks can work as imaging 
element with reasonable SNR in a 3D imaging system.

A library of PSHs along some axial range is prerecorded using two synthesized CPMs. Then two intensity 
patterns resulting from the object after passing through the same CPMs, are recorded and composed to the object 
hologram. The visual information of the object at any plane can be obtained by cross-correlating the correspond-
ing PSH and the object hologram. The noise attached to the reconstructed images was minimized using the POF 
and averaging technique. It must be noted that the PSH library needs to be created only once in the training stage 
of the system and can be used to reconstruct any number of images. The proposed system offers many advantages 
such as large field of view, simple, aberration-free, and compact setup. Moreover, the 3D imaging is achieved from 
a single point of view with only two camera shots and without any mechanical movement. In comparison to other 
self-interference holography systems such as FINCH and COACH, LI-COACH offers holograms acquisition 
without the complication of wave interference. The applicability of the idea was verified with two plane and thick 
objects and the preliminary results are promising. The LI-COACH technique can open up several possibilities for 
imaging applications.
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