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Abstract: Fourier incoherent single channel holography (FISCH) is a 
method for recording spatially incoherent digital Fourier holograms. We 
present a general design of enhanced FISCH with a smaller optical path 
difference between interfering beams, when compared to our initial design 
[Opt. Lett. 37, 3723]. This reduction enables a proper system operation with 
a wider bandwidth. Potential resolution enhancement of the images 
reconstructed from the FISCH holograms consequentially follows. 
©2013 Optical Society of America 
OCIS codes: (090.0090) Holography; (090.1995) Digital holography; (110.6880) Three-
dimensional image acquisition; (100.3010) Image reconstruction techniques; (070.6120) Spatial 
light modulators. 
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1. Introduction 

Fourier incoherent single channel holography (FISCH) is a recently developed method for 
recording digital Fourier holograms of spatially incoherent scenes [1]. Its development 
followed the successful realizations of the Fresnel incoherent correlation holography 
(FINCH) system [2–5], and was inspired by the many advantageous properties of FINCH, 
which are also inherent in FISCH. 

Both FINCH and FISCH are distinctively characterized by their structure of a single 
channel incoherent interferometer. A single beam of light, emitted from a single point source, 
is modified using spatial light modulators (SLMs) to split the emitted light into two separate 
beams. The beams propagate through the interferometer within the same path, until reaching a 
digital camera, where an interference pattern, representing the point source three-dimensional 
(3D) location, is formed and recorded. This single channel configuration is fundamentally 
robust being essentially immune to vibration and is easier to align when compared to classical 
dual-path holography systems. 

Though we deliberately chose to implement both systems in a single channel 
configuration, the adaptation of their conceptual method of operation into a dual-path form is 
straight-forward. This has the possible advantage of eliminating the need for an SLM (see, for 
example [6]), though at the price of losing the single channel advantage. Still, in-line Fresnel 
holograms suffer from the well-known twin image problem, where a single object results with 
two conjugated images, commonly referred to as the image and its twin, and an additional 0th 
diffraction order term. In the hologram reconstruction process, overlapping and inseparable 
light (i.e., information) that is emitted from the two images, and from the 0th order term, 
renders the resulting reconstruction unusable, as it appears blurry and noisy. Consequentially, 
one must find a way to eliminate the twin image and the unwanted 0th order term, usually by 
applying a phase-shifting procedure [2–7] that requires at least three exposures. This 
procedure is necessary in FINCH, so even if a SLM is not used in any FINCH dual-path 
configuration, alternative phase-shifting devices (e.g., phase retarders, piezo mounted 
mirrors) are still needed. In FISCH, a Fourier hologram is recorded where the three 
diffraction orders can be angularly separated. Hence, it is possible to eliminate the twin image 
problem by recording a hologram of a scene that occupies only a half-plane. By the term half-
plane, we mean that any straight line crossing the origin divides the plane to two equal halves. 
The complete 3D information of the scene can therefore be extracted from a single FISCH 
exposure. In this case, however, a high bias level in the recorded hologram might compromise 
the quality of the reconstruction results [1]. 

The introduction of FISCH has recently been followed by another successful attempt of 
recording spatially incoherent digital Fourier holograms using a radial shearing interferometer 
[8]. In that work, the recorded Fourier hologram results from the interference of two 
wavefronts that represent the same single point source object, but with different 
magnifications of α  and 1/β α= . In our original FISCH design [1], the magnification of 
the two wavefronts are usually one ( )α  and minus one ( )β , giving rise to a potentially 
higher resolution, but also to an increased optical path difference (OPD). This situation can be 
compared with a rotational shearing of 180°. However, the interference of two wavefronts 
that only differ from each other by a pure rotational shearing, as in the case of a rotational 
shearing interferometer (RSI) [9], results in complete loss of any depth information, whereas 
in FISCH, interfering beams from points of non-zero depth have different spherical 
wavefronts, and so depth information is retained. 

In this paper, an enhanced FISCH design is introduced, offering reduced OPD, without 
sacrificing the system resolution. Moreover, due to the OPD reduction, the system can 
efficiently handle signals of wider bandwidths, with minimal resolution loss, in comparison to 
our initial design [1], whenever the OPD is a limiting factor. Additionally, the new design is 
implemented using two SLMs, and therefore offers greater flexibility, such that the FISCH 
system can be instantaneously transformed into a FINCH system, and vice versa. This is in 
contrast to our less flexible original FISCH design, in which only a single SLM was 
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configured in a double-pass mode [1]. Various characteristics of spatially incoherent 
holography systems that are mentioned throughout this paper are detailed in Appendix 1. 

2. System design and theoretical analysis 

 
Fig. 1. Schematics of two FISCH recorder designs: RC, resolution chart; SLM, spatial light 
modulator; P1 and P2, polarizers; Lo and Lr, lenses. In (a) the polarization sensitive axes of the 
SLMs are perpendicular to each other, whereas in (b) they coincide with one another (i.e., in 
parallel). The symbols ,  and  are polarization directions parallel, perpendicular and at 45° 
to the plane of the page, respectively. 

Two proposed designs of enhanced FISCH are schematically presented in Fig. 1. The systems 
consist of a collimation lens oL , two SLMs located between two, in parallel, polarizers, and a 
digital camera. An additional refractive lens rL , which was not used in our earlier FISCH 
design [1], is located between oL  and the first SLM. We first describe the design shown in 
Fig. 1(a), and follow with a short discussion of the differences between that system and an 
alternative design depicted in Fig. 1(b). The SLMs are placed with their active axes 
perpendicular to each other and at a 45° angle to the transmission axis of the polarizers. Each 
SLM only modulates the phase-components of the incident light that have their polarization 
aligned with its active axis, while components of perpendicular polarization, aligned with the 
non-active axis of the SLM, are not affected [2]. This configuration enables separate control 
over perpendicular polarization components of the light beam traveling within the system. 

The working concept of FISCH is depicted in Fig. 1(a), where a point object is located at 
the front focal plane of the collimation lens Lo, so that s oz f= . A diverging spherical wave, 
induced from the point source, is collimated into a plane wave by the lens oL , and is 
converged into a spherical wave by the refractive lens rL . This wave is eventually 
transformed into two beam cones: one that diverges from the real image point ,1ir , due to 
SLM1 (with a phase mask forming a converging diffractive lens), and one that diverges from 
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the virtual image point ,2ir , due to SLM2 (forming a diverging diffractive lens). The focal 
lengths of the two, SLM-realized, diffractive lenses are determined so that the two image 
points, ,1ir  and ,2ir , are formed at a distance 1z  from SLM1, on the same transverse plane. 
The two beam cones originate from the same source and are therefore spatially coherent. 
Their interference results with a cosine fringe pattern on the digital camera, representing the 
source location ( , )s s sxr y= . If the object point is located outside of the front focal plane of 

oL , the two image points are not formed at equal z-distances from SLM1, because of different 
locations and focal lengths of the imaging lenses of the two points (both points share oL  and 

rL , but their final image is formed either by SLM1 or by SLM2). As a result of the 
longitudinal gap between the image points, a quadratic phase term, representing the point 
source depth location, sz , is encoded into the fringe pattern. Fringe patterns of all spatially 
incoherent point sources are summed over the camera, forming a Fourier hologram. Note that 
similar to the case of the RSI [9], a Fourier hologram is obtained because one image is 180° 
rotated compared to the other image. However, unlike the RSI, FISCH can store 3D 
information, and in this sense FISCH is actually a combination of both rotational and radial 
interferometers. 

An alternative configuration of FISCH is presented in Fig. 1(b), where the active axes of 
both SLMs are in the same direction, and therefore no longer offer control over separate, 
perpendicular components of polarizations. Still, the working concept strongly resembles the 
one of Fig. 1(a), except that the interference now occurs between two converging spherical 
waves: the first converges into the real image point ,1ir , and is not affected (modulated) by 
either of the SLMs; the second converges into the real image point ,2ir , after being modulated 
by the two SLMs. It is easy to show that SLM1 is similarly used in both configurations, where 
it acts as a converging diffractive lens, whereas SLM2 acts either as a diverging [Fig. 1(a)] or 
as a converging [Fig. 1(b)] diffractive lens. The focal length of this lens is the same in both 
configurations, but with an opposite sign. Additionally, when the distance between SLM2 and 
the camera is kept zero, the two configurations are completely equivalent and the hologram is 
recorded with a perfect overlap of the two beam cones. This is achieved in practice using a 
relay system as will be discussed later. Further presented analyses and experiments in this 
study are based on the configuration presented in Fig. 1(a), although a special case of the 
general configuration of Fig. 1(b) has already been presented in [1], in which interference 
occurs between two plane waves, thus effectively the two opposite point images are obtained 
at infinity. 

Our mathematical analysis of FISCH starts from the recorded intensity for an arbitrary 
point source object of complex amplitude sA , positioned at the coordinate ( , )s sr z . This point 
source induces an inclined spherical wave of the form of , ) ) (1/( , ); ( /s s s s s sT x y Lr z A zr Q z−=  
over the plane of the collimation lens oL , where 1) exp[ ]( 2 ( )x ys i yL s x sπλ −= +  and 

1 2 2( ) exp[ )](ss yQ i xπ λ− +=  are the linear and the quadratic phase functions, respectively, in 
which λ  is defined as the central wavelength. Let )(1/ dQ z∗  denote a Fresnel propagation of 
a wave along a distance dz  (mathematically, *  denotes a two-dimensional convolution), and 

( 1/ )lQ f⋅ −  denote the transmission function of a lens of focal length lf . The following 
intensity is recorded over the camera plane: 
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where 1f  and 2f  are the focal lengths of the diffractive lenses realized by SLM1 and SLM2, 
respectively. Other parameters in Eq. (1) are clearly defined in Fig. 1(a), and include: of  and 

rf , the focal lengths of the two refractive lenses, oL  and rL , respectively; the oL  to rL  
distance, 1d ; rL  to SLM1 distance, 2d ; the distance between the two SLMs, 1h ; and the 
effective distance between SLM2 and the digital camera, 2h . 

Based on a mathematical justification presented in [10], Eq. (1) can be rewritten in the 
more compact form of: 
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where 1b  and 2b  are constants, , , , 1/ [ ( )]e s e o e r s e or r df f z f += , , 2e e rz f d= + , 

, / ( )e o s o o sz f ff z= − , , , 1 , 1( ) / ( )e r r e o r e of f d f f df = + − − , ,1 1 1/ ( )e e ef f z f z−= , and 

,2 2 1 2 1) / (( )e e ef h ff z z h= + − − . For spatially incoherent objects, each point source is only 
spatially coherent to itself and cannot interfere with other points. As a result, the recorded 
hologram, ( , )H x y , is simply a summation over all point source contributions: 

 ,( , ) ( , ; .)s s s s sr z dx dy dzH x y I x y=  (3) 

The values of 1f  and 2f  are inferred from the special case of a point object located at the 
front focal plane of the lens 0L , as depicted in Fig. 1(a), which results with ,1 1ef z= −  and 

2 2e rz fd z−= = − . For this case, it can be easily proved that in order to record a Fourier 
hologram of optimal resolution, ,1ir  and ,2ir  must reside within the same transverse plane, so 
that the two quadratic terms in Eq. (2) cancel each other. Additionally, a perfect overlap 
should exist between the two beam cones on the SLM2 plane. These conditions are satisfied 
with 21 1 2 1/ [2( )]f h z z h= −  and 2 1 2 1 2( ) / (2 )f hh z z= − − . Moreover, the distance between 
SLM2 and the camera should be kept zero (i.e., 2 0h = ). For 2 0h ≠  a Fourier hologram is 
still formed, but its resolution is diminished since complete overlap between the two 
interfering beams can no longer be achieved. Under the above conditions, Eq. (2) can easily 
be reduced to: 
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where 2
s sI A=  is the intensity of the point source, and c.c. is the complex conjugate of the 

left term inside the square brackets. As explained in [1], Eqs. (3) and (4) indicate that the 
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recorded hologram is of a Fourier type, and its reconstruction process, using a Fourier 
transforming lens of focal length recf , can be formulated as: 

 { }1 1( , , ) ( , )1 ,rec
rec rec

s x y z H x yv Q
zfλ

−= ∗  (5) 

where 1−  is the inverse Fourier transform (FT), [ ]v a  is the scaling operator, so that 
[ ] ( ) ( )v a f x f ax= , and recz  is the reconstruction distance for points outside the front focal 

plane of oL  (with s oz f≠ ), which is, based on Eqs. (2) and (5), equal to: 
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For a point located at ( , )s s ozr f= , the reconstruction distance is 0recz = , thus the 
reconstruction is the inverse FT of Eq. (4) (assuming 2 0h = ): 
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where we assume that the system is only aperture limited by 1SLMR , the radius of the beam at 
SLM1 [Fig. 1(a)], restricting the recorded hologram to a clear disc )( HP R  of radius 

1 2 1 2 1 2 1 2) / ) /( ( )(H SLM SLM rR R z R z fh z h d=− − −= . Equation (7) contains three terms that 
represent the 0th order, the point source image, and its twin. Assuming a proper separation of 
these three terms (with large enough sr ), or the elimination of the unwanted terms, using a 
phase-shifting procedure [5], the point source image can be shown to be proportional to [11]: 

 2 22
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F s s T s T s
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h I Jinc x M x y M y
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r
f
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where 1( ) ( ) /Jinc r J r r= , 1( )J r  is the Bessel function of the first kind and of order one, and 
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is the transverse magnification of the point source, in its reconstruction plane. 
In view of a recent publication [12], showing that FINCH violates the Lagrange invariant 

[13], it is interesting to check how FISCH stands in relation to this general law of imaging 
systems. The Lagrange invariant actually states that the product of the transverse and angular 
magnifications is identically one. The transverse magnification is given in Eq. (9) and the 
angular magnification is / ( )A H o o recM R f R f= , where 1 2( )/o SLM r rR f fR d= −  is the radius of 
the beam at the refractive lenses. Therefore, the product A TM M  is: 
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Here again FISCH, as FINCH before it, violates the Lagrange invariant. If a perfect overlap 
between the cones of the two interfering beams is kept, the product of the transverse and 
angular magnifications is 2 in both FISCH and FINCH. This value of 2 leads to an optimal 
imaging resolution as is shown next. 
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Based on Eq. (8), the width of the system point spread function at the object plane (PSF) 
is [11]: 

 2

1

1.22 0.61 0.61 0.61 ,rec o or

H T SLM r o

f f ff d
R R f R NAM

λ λ λ λ−
Δ = = ⋅ = =

⋅
 (11) 

where /o oR f  is the numerical aperture (NA) of the system. Equation (11) indicates that, 
under the above conditions and assumptions, the introduction of the additional refractive lens 

rL  into FISCH does not deteriorate the resolution of the system. Comparing the resolution of 
FISCH that results from Eq. (11) with a conventional imaging system of similar NA, 
demonstrates the super resolution capability of FISCH. The same capability is exhibited in 
FINCH and is thoroughly discussed in [3]. 

In order to record a hologram with adequate fringe visibility, the maximum OPD, maxδ , 
should satisfy the condition: 

 
2

,max
λδ

λΔ
≤  (12) 

where λΔ  is the source bandwidth in terms of wavelengths [14]. For points located at the 
front focal point of the input lens oL , the maximum OPD is (see Appendix 2 for a detailed 
description): 

 2
1

1 2

,max SLM
z
z

R
z

δ Δ=  (13) 

where 2 1z z zΔ = − . According to Eq. (13), it is possible to reduce the maximum OPD value, 
and thereby increase the capabilities of the system, by narrowing the gap zΔ . For a fixed 1h  
distance between the two SLMs, this is achieved through the introduction of the additional 
refractive lens, rL , with a proper selection of its focal length, rf , where 2 2rz f d= − . We 
further note that according to Eq. (13) it is possible to check whether a source of a wide 
bandwidth violates the maximum OPD condition of Eq. (12). When this condition is violated, 
the effective 1SLMR  value [Eq. (11)] might be reduced, below its actual physical dimension 
(i.e., the radius of SLM1 aperture), thereby decreasing the system resolution. 

Obviously, narrowing the gap zΔ  is limited by a number of practical considerations. 
Since the length of the holographic grating cycle is directly related to the gap zΔ , the pixel 
size of the camera pΔ , which records the holographic grating, dictates the lowest limit of zΔ . 

Based on Eq. (7), the length of the hologram grating cycle is 2 1( ) / (2 )o r sf z fh rλ − , and this 
length should not be less than the size of two camera pixels, 2 pΔ , in order to guarantee a 
proper sampling of the hologram. A straight forward calculation indicates that for a given 
value of 2 2rz f d= − , the minimal gap zΔ  is: 

 2
min

2

max

,
0.5

8 s

o

p rr

z
z

f z
f

λΔ =
+

Δ

 (14) 

where 
maxsr  is the maximal lateral distance of an object point from the origin. In deriving Eq. 

(14), we used the relation 1 2 21 12 / )(h z z z z+= , obtained from the condition of perfect overlap 
between beam cones on SLM2, and the relation 21 1 1 2/ ( )z f z f z+= . It is clear from Eq. (14) 
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that in order to satisfy the condition 2z zΔ <  the inequality 2 max
/ (4 ) 1so p rrf z fλ Δ >  should 

be satisfied. In our setup and experiments the values were: 635nmλ = , 100rf cm= , 
25of cm= , pΔ = 6.5μm, 2 88z cm= , and 

max
2.3sr mm≈ . Therefore, and according to Eq. 

(14), min 52.8z cmΔ ≈ , which is smaller than the actual 62.1z cmΔ ≈  value used in our 
experiments. 

3. Experiments and results 

 
Fig. 2. Experimental setup of FISCH: RC, resolution chart; SLM1 and SLM2, spatial light 
modulators; P1 and P2, polarizers; Lo, Lr, Lc,1 and Lc,2, lenses; M1 and M2, mirrors. 

The FISCH system we implemented is shown in Fig. 2. This implementation is based on Fig. 
1(a), where the active axes of the two SLMs are perpendicular to each other. Additionally, 
since the SLMs are reflective, a small angle of approximately 7° was introduced between the 
SLM plane surface normal to the optical axis. The aspect ratios of the phase masks displayed 
on the SLMs were adjusted to compensate for this angle. Alternatively, the angle could be 
eliminated by using a beam splitter in front of each SLM [2]. However, this would cause 
significantly reduced light efficiency. A simple optical relay system of minus one 
magnification, realized using the 4f system with two refractive lenses, ,1cL  and ,2cL  (both 
with a focal length of 15cf cm= ), was inserted between SLM2 and the digital camera to 
enable choosing any desired effective 2h  values. This addition is required to overcome a 
technical limitation, where it is physically impossible to place the camera and SLM2 
adjacently (see Fig. 2). We used two identical Holoeye PLUTO SLMs (1920x1080 pixels, 
8μm pixel pitch, phase only modulation) and a PCO Edge sCMOS camera (2560x2160 
pixels, 6.5μm pixel pitch, monochrome). Other parameters in the system were: 25of cm= , 

100rf cm= , 1 7.5d cm= , 2 12d cm= , 1 40h cm= , 1 36.5 mf c= , and 2 10.9f cm= − . 
In the first experiment, two negative NBS 1963A resolution test charts (RCs) served as a 

target, and were placed simultaneously, using a beam combiner, at two different planes, with 
,1 25s oz f cm= =  and ,2 27s mz c= . The effective distance between the second SLM and the 

camera was set at 2 4h cm= . The charts were back-illuminated using two LEDs (Thorlabs 
LED631E, 4mW, 635nmλ = , 10nmλΔ = ). To reduce bias, a two-exposure, real-valued, 
FISCH hologram was recorded. The two exposures are 180° out of phase from each other, 
and the final hologram results from their subtraction. As previously noted, a single exposure 
FISCH hologram is feasible, but two exposures provide better results [1]. 

The reconstructions of the FISCH recorded holograms are presented in Figs. 3(a)-3(c), 
clearly demonstrating the refocusing capability of FISCH and its ability to store 3D 
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information. Figure 3(a) is the result of a two-dimensional (2D) inverse FT of the recorded 
hologram, showing both the image of the ,1s oz f=  resolution chart and its holographic twin in 
a sharp focus and with adequate separation, achieved by limiting the RC position to a 
geometrical half-plane in which the origin (i.e., the optical axis) is not confined. For the 
second target, located at ,2s oz f≠ , the image and its twin no longer reside within the same 
plane, and additional Fresnel propagation is needed to achieve that plane in focus, as 
demonstrated in Figs. 3(b) and 3(c). Note that the additional propagation causes de-focusing 
of the images in the other planes which were previously in focus. 

As mentioned in the introduction, the proposed FISCH design can easily be converted into 
a FINCH system, since two separately controlled SLMs are used. By eliminating the 
influence of SLM2, applying zero phase modulation instead of a quadratic phase function, the 
system is instantaneously transformed into a dual-lens FINCH system [4], here demonstrated 
experimentally with a refractive lens (the rL  lens), using the polarization method [2], for the 
first time. Reconstruction results of the FINCH hologram at two planes of focus are presented 
in Figs. 3(d) and 3(e). In Figs. 3(f)-3(i), average cross-section curves for the regions marked 
by a green rectangle in Figs. 3(a), 3(b), 3(d) and 3(e), respectively, are plotted (in blue). These 
curves are bounded by their upper and lower envelopes (shown in green and red, 
respectively), from which an estimated visibility curve (in black) was derived. The average 
value of this curve serves as an estimated visibility (EV) value for the RC lines in the 
designated regions. Here, EV values of FINCH appear to be somewhat higher than those of 
FISCH. Additionally, one can observe that the FINCH reconstructions exhibit a higher degree 
of de-focusing, between different planes of focus. Notice how in Fig. 3(a) one can still 
observe the figures '18.0' of the out-of-focus RC, whereas in Fig. 3(d) these details are too 
blurred, and even interrupt with the lower lines of the in-focus 16 line pairs per mm RC. 

 
Fig. 3. FISCH reconstructions: (a) top left, at the Fourier plane, where the image of the upper 
resolution chart (RC) and its twin image are in focus; (b) top center, at the front of the Fourier 
plane, where only the image of the lower RC is in focus; (c) top right, at the back of the 
Fourier plane, where only the twin image of the lower RC is in focus. (a) is obtained by a 2D 
inverse Fourier transform of the final hologram, while (b) and (c) are obtained by a Fresnel 
propagation from the Fourier plane (a), backward in case of (b), or forward in case of (c). (d), 
bottom left, and (e), bottom center, are FINCH equivalents of (a) and (b), respectively. The 
blue curves in (f)-(i), bottom right, represent the average cross-section of the area marked by a 
green rectangles in (a),(b),(d), and (e), respectively. EV is the estimated visibility value, 
calculated as the average value of the visibility curve (in black), which was extracted from the 
upper (green curves) and lower (red curves) envelopes of the average cross section (blue 
curve). 
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To demonstrate the advantages of the suggested FISCH design due to reduced OPD, a 
second set of experiments was conducted. We used a single NBS 1963A RC as a target, 
located at s oz f= , illuminated either with a 10nm full width half max (FWHM) light source 
(Thorlabs LED631E) or with a 80nm FWHM light source (EKE Halogen lamp, 150W, 
followed by a band pass filter of 650nmλ = , 80nmλΔ = ). We tested the system with and 
without the refractive lens rL . The focal length 1f  and 2f  were set accordingly, with 

1 36.5 mf c=  and 2 10.9f cm= −  for 100rf cm=  (with rL ), and with 1 2 1 / 2 20ff h cm= − = =  
for rf → ∞  (without rL ). All other parameters were left unchanged, except 2 0h = . The ratio 
between the values of maximal OPD with and without rL  is 2.74 / 5 , meaning that the 
maximal OPD value obtained with rL  is almost half of the value obtained without rL . 

The experimental results are presented in Figs. 4(a)-4(d). With 10nmλΔ =  both FISCH 
configurations demonstrate sufficient resolution to show complete details of the 18 line pairs 
per mm RC (Figs. 4(a) and 4(c), with EV values of 0.76 and 0.40, respectively). When the 
illumination is changed to a wider bandwidth, with 80nmλΔ = , both configurations exhibit 
deterioration of the reconstruction quality (Figs. 4(b) and 4(d)). However, while with 

rf → ∞  the lines are smeared into a rectangle (with a low EV value of 0.05), and details are 
lost, with 100rf cm= , details are preserved and most of the lines are clearly separable (with 
an EV value of 0.36). This experiment clearly demonstrates the enhanced resolution of the 
proposed design, due to the reduced OPD as has been previously seen in FINCH [4]. 

 
Fig. 4. Effect of bandwidth and OPD on FISCH (a)-(d) and FINCH (e)-(h) resolution: (a),(e) 
with fr = 100cm and a 10nm FWHM light source, where all details of the RC are clearly 
visible; (b),(f) with fr = 100cm and a 80nm FWHM light source, where the reconstruction 
quality is diminished, but most details of the RC are still visible; (c),(g) with fr→∞ and a 10nm 
FWHM light source, where most details of the RC are clearly visible but less clear than (a),(e); 
(d),(h) with fr→∞ and a 80nm FWHM light source, where most details of the RC are lost. The 
blue curve in each sub-figure represents the average cross-section of the area marked by a 
green rectangle. EV is the estimated visibility value, calculated as the average value of the 
visibility curve (in black), which was extracted from the upper (green curves) and lower (red 
curves) envelopes of the average cross section (blue curve). Reconstruction results are shown 
to match in size. 
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We repeated the above experiment with the system transformed into FINCH. Results are 
presented in Figs. 4(e)-4(h), and demonstrate the same effect of bandwidth and OPD with 
FINCH as seen in Figs. 4(a)-4(d) for FISCH. Here, also, these observations are further 
supported by the calculated EV values. We note that the reconstructions presented in Fig. 4 
are shown to match in size, to allow easy comparison. Rescaling of the displayed results, 
where necessary, was achieved by zero-padding the data before the final inverse FT of the 
reconstruction process had been applied. 

4. Summary and conclusions 

Two enhanced FISCH configurations have been presented. We have analytically shown that 
the enhanced FISCH design offers a reduced optical path difference between interfering 
beams of light. This reduction is achieved without compromising the system resolution. We 
experimentally demonstrated the enhanced resolution using the proposed system, and also 
showed that it is superior to our initial design [1] in the sense of operating properly with a 
wider range of source bandwidth values. These are attributed mainly to the reduced OPD, but 
may also result from the ability to condense more light (i.e., transfer more information) 
through the SLMs with our new design. It should also be noted that the best resolution was 
obtained at shorter bandwidths. This may not be related to the inherent properties of FISCH 
or FINCH alone, but also due to the fact that the optics and SLMs used in these experiments 
are not achromatic. 

Another interesting observations should be discussed in view of a recently published 
paper [12] in which it has been indicated that self-interference holography systems violate the 
Lagrange invariant (also known as the Smith-Helmholtz invariant [13]), in the sense that the 
product between the transverse (MT) and the angular (MA) magnifications is not necessarily 
equal to 1, as is the case of the entirety of conventional imaging systems. We would like to 
make the following comments: 

1. It is evident from Eq. (10) that FISCH also violates the Lagrange invariant, exactly as 
happens with FINCH. However, because FISCH with a single exposure can, in 
principle, produce an output image in real-time using a real-time holographic 
recorder (e.g., photorefractive crystals, photothermoplastic devices [15], optical-
addressed SLM [16]), FISCH can violate the Lagrange invariant in real-time. 

2. Not all self-interference holography systems violate the Lagrange invariant. For 
instance, the system in [17] does not violate the Lagrange invariant, although it is a 
self-interference holography system. The additional condition which must be 
satisfied in order to violate the Lagrange invariant is that, for all object points, both 
object and reference beams should contain information about the location of the 
same object point. 

3. The violation of the Lagrange invariant can be bi-directional, expressed by two 
inequalities: (a) 1 | | 2T AM M< ≤ ; (b) 0 | | 1T AM M< < . Only condition (a) is connected 
to image resolution improvement beyond the classical criterions (i.e., Rayleigh and 
Abbe resolution criterions). The condition of (b) is fulfilled in the system proposed 
in [8], for instance. The optimal condition, in terms of best resolution, is obtained 
when the condition | | 2T AM M =  is satisfied. This last condition is fulfilled in both 
FINCH and FISCH if and only if there is a perfect overlap between the two beam 
cones on the plane of the digital camera. 

Recently, it was suggested to eliminate the distance between the objective lens and the 
SLM in FINCH, in order to increase the field of view in the optical system and maintain (or 
improve) beam centricity around the optical axis [18]. This is achieved using a relay optical 
system, and can also be applied to the suggested FISCH design using two relay systems for 
achieving effective zero values of 1d  and 2d . Alternatively, one can use a single relay 
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system, and replace the two lenses, oL  and rL , with one equivalent lens. We hope to realize 
one of the alternatives in the near future. 

The proposed FISCH system can electronically be switched into a FINCH system, without 
any mechanical intervention, and thus offers the ability to record both Fourier and Fresnel 
holograms. Note that adding a beam splitter before SLM2 and using two cameras for each 
channel, enable recording the FINCH and FISCH simultaneously. Consequently, it is possible 
to exploit any unique advantages of both systems. 

Appendix 1 

A detailed comparison between spatially incoherent holography systems that were mentioned 
in this paper is shown in Table 1. 

Table 1. Characteristics of Various Spatially Incoherent Holography Systems 

Holographic 
method 

Type Number of 
exposuresa 

Depth 
information 

Resolution 
beyond 

Rayleigh 
criterion 

Configuration Phase-shifting, 
method 

FISCHb [1] Fourier One, two, 
or three 

Maintained Capable Single channel Optional, SLM

FINCH [2–5] Fresnel Three Maintained Capable Single channel Required, SLM
Incoherent Digital 
Holography (IDH)c 

[6] 

Fresnel Four Maintained Capable Dual-path, 
Michelson 

interferometer 

Required, piezo 
mounted mirror 

Sagnac radial 
shearing 

interferometer [8,9] 

Fourier One [9] or 
five [8] 

Maintained Incapable Common-path, 
Sagnac 

Optional, 
Pockels cell [8] 

Rotational shearing 
interferometry 

(RSI) [9] 

Fourier One Lost Capable Dual-path, 
Mach-Zehnder 

Optional 

Holography using a 
Mach-Zehnder 

setup [17] 

Fresnel Not stated, 
presumably 

three. 

Maintained Incapable Dual-path, 
Mach-Zehnder 

Required, piezo 
mounted mirror 

aFresnel type holograms require at least three exposures for twin-image removal via phase-shifting, but sometimes 
more are used. Fourier type holograms may require only a single exposure. 
bIn order to reduce the maximal OPD without sacrificing resolution, two SLMs must be used, instead of one. 
cIDH is conceptually based on FINCH [6].

Appendix 2 

In this appendix an expression of the maximal OPD value as is given in Eq. (13) is derived. 
We consider the case of a point source object located at the front focal plane of the 
collimating lens oL , with s oz f= , as described in Fig. 5. Without loss of generality, we 
assume 0sx =  so that (0, )s sr y= . Our OPD analysis follows the assumption that the OPD 
between an arbitrary pair of points that lie inside the same spherical wavefront of the 
converging spherical wave exiting the refractive lens rL  is zero (the OPD between point C  
and point F  in Fig. 5, connected by a dashed line that represents the wavefront), so that 
CA FA= , where 2, )(0, iA y z= − . 
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Fig. 5. Schematic of FISCH for finding the OPD at point E in the hologram plane due to a 
single point source object located at the front focal plane of Lo. 

Geometrically, the OPD at an arbitrary point in the hologram plane, 1, )( ,H HyE hx= , is: 

 ,CE FD DE DA DE EAδ = − − = − −  (15) 

where we have used the relations CE CA EA= −  and FD CA DA= − . Based on triangles 
similarities, it is easy to show that: 
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Under the paraxial approximation we get: 
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By applying the approximations in Eq. (18) into Eq. (15), together with 
1 1 2 1 2/2 ( )z zh z z+= , which results from the perfect overlap condition of the two beam cones, 

and assigning 1 2 12 / ( )h h iy zy z zy′ − +  we get: 

 ( ) ( )2
2 12 2

1 2 2 1

.
( )H H

z
x

z z
z

y
z z

δ =
+

′ +
−

 (19) 

The maximal possible value of the 2 2( )H Hy x′ +  term in Eq. (19) is equal to 2
HR , the square 

value of the recorded hologram radius (for a point source), so that: 

 { } ( )
( )

2
2 12 2 2 2

1 2
2 1

max ,H SH H LM

z
x

z

z
y R R

z

−
′ + =

+
=  (20) 

where we have used the relation 1 2 1 2 1 2 1 2 1) / ) /( ( )(H SLM SLMR h z R z z zR z z= − = − + . Based on 
Eqs. (19) and (20) we conclude that the maximal OPD value is: 

 2
1

1 2

,max SLM
z

z z
Rδ Δ=  (21) 

where 2 1z z zΔ = − . 
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