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General configuration for using the longitudinal
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Abstract

The Fourier relation between the longitudinal degree of coherence and the radial intensity distribution of a light

source can be demonstrated by two configurations of a low spatial-coherence interferometer. We propose a general con-

figuration, which includes the two known types as special cases of the general design. Moreover, by adjusting the dis-

tance between the light source and the main lens of the interferometer we can apparently narrow the peak of coherence

beyond its known limit. This result might have consequences on the resolution limits of the low spatial-coherence

interferometer.

� 2005 Elsevier B.V. All rights reserved.
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The effect of longitudinal spatial coherence has been extensively investigated by several groups recently.

By this effect, the longitudinal spatial degree of coherence of an electromagnetic wave is obtained by one-
dimensional Fourier transform of the squared radial intensity distribution of a quasi-monochromatic

incoherent light source. This property is derived from the three-dimensional generalization of the Van Citt-

ert–Zernike theorem, as independently noticed several times by various researchers [1–4]. More recently,

people have experimentally demonstrated this effect [5–9] and pointed on possible applications like surface

profilometry [10] and holographic imaging [11].

There are two basic configurations demonstrating the longitudinal spatial coherence effect; one is with-

out [7–9] and the other with [5,6,10,11] a spherical lens positioned at a focal distance from the source. The
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difference between the two is in the value of the scaling factor of the Fourier transform mentioned above.

This difference, although seems only technical, determines different performance merits, like resolution and

dynamic range, for the two systems.

In this study, we generalize the system which demonstrates the longitudinal spatial coherence effect such

that both known versions become particular cases of the proposed general description. The general case is a
system in which the quasi-monochromatic source is positioned in an arbitrary distance from a spherical

lens. Obviously, in case this distance is exactly equal to the focal length of the lens, the setup is identical

to systems proposed in [5,6,10,11]. We show here that when the source is attached to the lens, the setup

is identical to the lensless version [7–9]. In other distances besides these two cases, the degree of coherence

is related to the source intensity by the same general mathematical transform, but with a different scaling

factor depending on the specific distance between the source and the lens. However the main issue of this

study appears in the general expression of the longitudinal degree of coherence. It is implied from this

expression that there is a distance between the source and the lens in which the width of the degree of coher-
ence can be narrowed beyond the well-known limit obtained when the source is in the focal plane of the

lens. This finding may lead to low spatial-coherence interferometers [10,11] with significantly better depth

resolution than the today state of the art.

We start our analysis by observing on the complex degree of coherence between two complex amplitudes

behind a spherical lens. These two complex amplitudes are induced by the same incoherent quasi-mono-

chromatic source positioned a distance d in front of the spherical lens L1 as shown in Fig. 1. In order to

simplify the analysis we assume that the lenses in the system have infinite apertures. This assumption, as

can be seen in the following, leads at some point to an impractical result regarding the dimension of the
degree of coherence. This unrealistic result is later corrected in view of lenses� finite aperture. Let us look

first on the complex amplitudes induced from a single quasi-monochromatic point source with a time

dependent complex amplitude us(xs,ys, t). Using Fresnel approximation, the complex amplitude on the lens

L1 plane is
Fig. 1.
gðxl; yl; tÞ ¼ usðxs; ys; t � slÞ
exp½iðkd � xtÞ�
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Schematic of the interferometric system used for measuring the longitudinal spatial coherence effect. FZP = Fresnel zone plate.
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where (xl,yl) are coordinates of the lens plane, k is the wave number, x is the angular frequency, k is the

wavelength and sl is the time delay between the source and the lens L1. Using additional Fresnel propaga-

tion from the lens toward a plane located zn (n = 1,2) behind the lens, at the nth arm of the interferometer,

yields the following complex amplitude,
pnðxn; yn; zn; tÞ ¼
exp½iðkzn � xtÞ�

ikzn

Z 1

�1

Z 1

�1
gðxl; yl; t � snÞ exp � ik

2f
x2l þ y2l
� �� �

� exp i
k
2zn

ðxn � xlÞ2 þ ðyn � ylÞ
2

h i� �
dxl dyl; n ¼ 1; 2. ð2Þ
where sn is the time delay between the lens L1 to the point zn. Substituting Eq. (1) into Eq. (2) yields
pnðxn; yn; zn; tÞ ¼ �usðxs; ys; t � sn � slÞ
exp½iðkzn þ kd � xtÞ�

k2dzn
exp

ik
2d
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� �� �
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ik
2zn

x2n þ y2n
� �� � Z 1

�1

Z 1

�1
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ikbn
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x2l þ y2l
� �� �

� exp
�ik
znd

ðxszn þ xndÞxl þ ðyszn þ yndÞyl½ �
� �

dxl dyl; ð3Þ
where bn = (1/zn + 1/d�1/f). The integral in Eq. (3) can be considered as a two-dimensional Fourier trans-

form. Using Fourier table, the complex amplitude induced by a single source point at the nth arm is,
pnðxn; yn; zn; tÞ ¼ usðxs; ys; t � sn � slÞ
exp½iðkd þ kzn � xtÞ�

ibnkdzn
exp i

p
kd

1� 1

bnd

� �
x2s þ y2s
� �� �

� exp i
p
kzn

1� 1

bnzn

� �
x2n þ y2n
� �� �

exp
�i2p
kbnznd

ðxnxs þ ynysÞ
� �

. ð4Þ
Assuming that the entire optical path differences in the system are much smaller than the coherence length

of the quasi-monochromatic light source, all the temporal coherence effects are neglected. Therefore, the

complex degree of coherence between two arbitrary points (x1,y1,z1) at the first arm and (x2,y2,z2) at

the second arm, behind the lens L1, for the entire incoherent source points, is defined as [4]
lðx1; y1; z1;x2; y2; z2Þ ¼
R R

p1ðx1; y1; z1;xs; ys; tÞp�2ðx2; y2; z2;xs; ys; tÞdxs dys
½
R R

jp1ðx1; y1; z1;xs; ys; tÞj
2
dxs dys

R R
jp2ðx2; y2; z2;xs; ys; tÞj

2
dxs dys�

1=2
. ð5Þ
Substituting Eq. (4) into Eq. (5) yields
lðx1; y1; z1;x2; y2; z2Þ ¼ A
Z Z

I sðxs; ysÞ exp
ip

kd2

1

b2
� 1
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� ��
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dxs dys; ð6Þ
where
A ¼
Z Z

I sðxs; ysÞdxs dys
� ��1

.

From the general expression of Eq. (6) one can easily derive the two well-known cases. First, in the case

d = f, bn is equal to 1/zn, and the degree of coherence becomes
lðDx;Dy;DzÞ ¼ A
Z Z

I sðxs; ysÞ exp
ipDzðx2s þ y2s Þ

kf 2
þ i2pðDxxs þ DyysÞ

kf

� �
dxs dys; ð7Þ
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where Dx = x2�x1, Dy = y2�y1 and Dz = z2�z1. The expression in Eq. (7) is naturally the 3-D degree of

coherence obtained in the system where the source is positioned in the front focal plane [4–6,10,11].

In the case d = 0, the degree of coherence becomes
lðx1; y1; z1;x2; y2; z2Þ ¼ A
Z Z

I sðxs; ysÞ exp
ipDzðx2s þ y2s Þ

k�z2
þ i2p

k
xs

x2
z2
� x1

z1

� �
þ ys

y2
z2

� y1
z1

� �� �� �
dxs dys;

ð8Þ

where �z ¼ ðz1 þ z2Þ=2. Eq. (8) describes a degree of coherence obtained in a lensless system. [4,7–9] This re-

sult is well understood, because the attached lens multiplies the source with a complex amplitude of a pure
phase distribution, which does not have any influence on the intensity distribution of the source. In other

words, a system in which the lens is attached to the incoherent light source is effectively identical to a lens-

less system.

Back to the general case expressed in Eq. (6), let�s concentrate now only in the longitudinal degree of

coherence l(0,0,Dz). Substituting (Dx,Dy) = (0,0) and the approximation 1=b2 � 1=b1 ffi ðdf Þ2Dz=
ðfd þ f�z� �zdÞ2 into Eq. (6) yields the following longitudinal degree of coherence,
lðDzÞ ¼ A
Z 1

0

~I sð
ffiffiffiffiffi
qs

p Þ exp ipf 2Dzqs

kðdf þ �zf � �zdÞ2

" #
s

dqs; ð9Þ
where
~I sð
ffiffiffiffiffi
qs

p Þ ¼
Z 2p

0

I sð
ffiffiffiffiffi
qs

p
; hsÞdhs; qs ¼ x2s þ y2s and hs ¼ arctanðys=xsÞ.
Apparently from Eq. (9), the longitudinal degree of coherence is a Fourier transform of the squared radial

distribution of the source with scaling factor that depends on the distance between the source and the lens.

Moreover, there is a singular point in which the scaling factor f 2=2kðdf þ �zf � �zdÞ2 can apparently grow to
infinity, when the distance d approaches to the value d ¼ �zf =ð�z� f Þ. This unrealistic result is obtained be-

cause of the assumption of an infinite aperture for the lens L1. Note that the singular point for the longi-

tudinal degree of coherence is located at a distance that also fulfills the imaging condition for the source.

This last observation intuitively explains the whole phenomenon; From Eq. (8) one sees that the width of

the degree of coherence proportionally grows with �z – the distance of the measurement point from the

source. Therefore, it is expected that when the measurement point getting close to the source�s image,

the degree of coherence becomes more and more narrow. This last observation indicates on the minimal

width of the longitudinal coherence peak that can be achieved in this interferometer. Since we assume that
each point on the light source is completely uncorrelated with every other source point, the coherence

length at the imaging plane is equal to the thickness of each source point�s image. From diffraction consid-

erations, it is well known [12] that the thickness of each point�s image is approximately w ffi k�z2=R2
L, where

RL is the radius of lens L1. Therefore, w is the minimal width of the longitudinal coherence peak and the

depth resolution limit that can be achieved by our system. Note that from intuitive reasoning, and although

we initially assumed that the lens L1 has infinite aperture, its practical finite aperture dictates the depth res-

olution limit which can be achieved by this interferometer. Nevertheless, the meaning of this result is that by

approaching toward the theoretical singular point, one can narrow a peak of coherence beyond the well-
known limit obtained at the source–lens distance d = f, from a width � kf 2=R2

s where Rs is the radius of

the source, to the approximated value k�z2=R2
L. The depth resolution can be improved by the ratio

ðfRL=�zRsÞ2, compared to systems where the source is positioned in the front focal plane [4–6,10,11].

We also note that the analogy, mentioned in [5] and [6], between the partial coherence and the scalar

diffraction theories does not exist anymore for the case d 6¼ f. To see this, let�s calculate the complex ampli-

tude along the optical axis, u (0,0,z), behind the lens of Fig. 2(a), where an aperture us(xs,ys) is illuminated
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Fig. 2. Schematic of diffraction through a spherical lens from an aperture illuminated by (a) a plane wave and by (b) a spherical wave.
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by a coherent plane-wave. This complex amplitude is obtained by an integral on all the contributions of the
aperture points, each of which is of the form of Eq. (4), as the following
uð0; 0; zÞ ¼ B
Z 1

0

~usð
ffiffiffiffiffi
qs

p Þ exp � ipðz� f Þqs

kðfd þ zf � zdÞ

� �
dqs; ð10Þ
where
~usð
ffiffiffiffiffi
qs

p Þ ¼
Z 2p

0

usð
ffiffiffiffiffi
qs

p
; hsÞdhs;
B is a constant, and since the axial distribution behind a single lens is considered, we substitute into Eq. (4)

the relation (xn,yn,zn) = (0,0,z). Comparing Eqs. (9) and (10), we see that the analogy between partial

coherence and scalar diffraction theories is valid only for the case d = f, where in all other cases the results

are different. In the case of diffraction, as expressed by Eq. (10), and for d 6¼ f, the complex amplitude is not

symmetric around the back focal point. This is because the outside variable z appears also at the denom-

inator of the phase expression in the integrand of Eq. (10). Moreover, the phase in the integrand of Eq. (10),

near the origin point z = f, is approximately p(f�z)qs/kzf for any value of d. Therefore, the focal depth can-
not be much less than kf 2=R2

s . On the other hand, in the partial coherence system, as expressed by Eq. (9),

the degree of coherence is always Hermiticity symmetric around the origin Dz = 0. This is because the out-

side variable Dz appears only at the numerator of the phase in the integrand of Eq. (9). Moreover, the dis-

tance d can approach the singular point in which the dimension of the degree of coherence goes down, and

becomes lens aperture limited rather than source aperture limited.

A similar conclusion is obtained between the partial coherence system and a more general coherent dif-

fraction system shown in Fig. 2(b). This time we consider diffraction from an aperture illuminated by a

spherical rather than a plane wave. The complex amplitude along the optical axis beyond the lens is ob-
tained from Eq. (10), where the aperture us is multiplied by a quadratic phase function of a spherical wave

(under the paraxial approximation) originated a distance D before the aperture, as the following:
uð0; 0; zÞ ¼ B
Z 1

0

~usð
ffiffiffiffiffi
qs

p Þ exp ipqs

kD

� �
exp � ipðz� f Þqs

k fd þ zf � zdð Þ

� �
dqs

¼ B
Z 1

0

~usð
ffiffiffiffiffi
qs

p Þ exp � ip½z� f ðDþ dÞ=ðDþ d � f Þ�qs

kDðfd þ zf � zdÞ=ðDþ d � f Þ

� �
dqs.

ð11Þ
As expected, the origin of the complex axial amplitude is shifted to the point image of the point source, at

z = f(D + d)/(D + d � f). Also, from Eq. (11) it is again clear that the analogy between partial coherence and

scalar diffraction is valid only for the case d = f, where the outside variable z appears only at the numerator

of the phase in the integrand of Eq. (11). In all other cases the complex amplitude is not symmetric around

the origin, because, again, the outside variable z appears also at the denominator of the phase. Finally, for
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any value of d, the focal depth is always dependent on the aperture size and there is no any singular point

for any d, in which the size of complex amplitude peak becomes lens aperture limited.

A simple experiment has been conducted to demonstrate the validity of the theory described previously.

In the experiment a He–Ne laser with k = 0.63 lm illuminated a Fresnel zone plate (FZP) projected by the

lens L on a rotating ground glass as shown in Fig. 1. The focal length of the lens L1 was f = 25 cm, and the
FZP diameter was 3.6 cm with N = 14.6 cycles from its center to its perimeter. The distance between the lens

and the stable mirror no. 1 was equal to z1 = 39 cm. The intensity distribution of the incoherent FZP source

is a binary approximation of the following cosine grating
I sðxs; ysÞ / 1þ cos pc x2s þ y2s
� �

þ b

 �

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s þ y2s

q
6 Rs; ð12Þ
where Rs is the overall radius of the source (1.8 cm in this experiment), c and b are parameters that control

the distance between the side peaks of the degree of coherence to the origin and their phase values, respec-

tively. Substituting Eq. (12) into Eq. (9) yields the following complex degree of coherence,
lð0; 0;DzÞ / sinc
f 2R2

sDz

2k½fd þ f�z� �zd�2

 !
� 2dðDzÞ þ expðibÞd Dzþ ck

f 2
ðfd þ �zf � �zdÞ2

� ��

þ expð�ibÞd Dz� ck
f 2

ðfd þ �zf � �zdÞ2
� ��

; ð13Þ
where the asterisk denotes convolution, d is Dirac delta function and sinc(x) = sin(px)/px. According to Eq.

(13), a source in the shape of FZP produces a longitudinal degree of coherence in a shape of three coherence

peaks, with a gap between every two successive coherence peaks of,
Dzg ¼
2Nk

ðRsf Þ2
ðfd þ �zf � �zdÞ2; ð14Þ
where the relation c ¼ 2N=R2
s is employed. According to Eq. (13), the width of any order of the spatial de-

gree of coherence, between the center and the first zero of the sinc, is
Dzw ¼ 2k½fd þ �zf � �zd�2

f 2R2
s

. ð15Þ
However, because of technical difficulties in measuring the orders� width, in the present experiment we mea-
sured only the gap between the coherence orders. Of course these coherence peaks are not directly observed

like diffraction pattern, but obtained by measuring the interference visibility versus the path difference be-

tween the interferometer mirrors. For every value of the distance d, we scan along some range with the mov-

ing mirror in order to find the value of the mirrors� gap in which the visibility is locally maximal. The gap

between the central (zero) and the first order was measured for eight values of the distance d. The results

are shown in Fig. 3, where the triangles are the measured half gap versus the distance d, and the solid line

is the calculated graph according to Eq. (14). In Fig. 3 we measured and calculated only the half gap Dzg/
2 because the path difference between the mirrors in a Michelson interferometer is double the actual shift
of the mirror. Note that in this graph there are three measuring points beyond the distance d = f = 25 cm,

and indeed the gap between the central and the first order is monotonically decreased according to

Eq. (14). Since the degree of coherence is symmetric and the two first orders are located at an equal distance

from the point Dz = 0, from its two sides, the overall dimension of the degree of coherence is decreased with

the increase in d. The good agreement between the measured and the calculated results verifies that the main

result of our analysis, expressed by Eq. (9), is correct.

The consequence of this analysis is that by properly adjusting the distance between the source and the

main lens, one apparently can narrow any peak of coherence beyond the known limit of approximately



Fig. 3. The half gap between the central (zero) and the first coherence orders versus the distance d between the source and the lens L1.

The solid line is calculated according to Eq. (14). The triangles denote the experimental results.
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kf 2=R2
s without considerable efforts. He does not need to decrease the wavelength of the light source, and by

that to invest more energy in the system. He also does not have to increase the system�s numerical aperture

and by that to introduce intolerable aberrations into the system. In order to improve the system�s resolution
he just needs to increase the source–lens gap beyond the focal distance up to the point where the system

becomes lens aperture, rather than source aperture, limited. The unique feature of improving resolution

performances without meaningful efforts might make this interferometer more attractive for applications

of tomography and profilometry.
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