pH BUFFERING OF PORE WATER OF RECENT ANOXIC MARINE SEDIMENTS

By Sam Ben-Yaakov

Reprinted from Limnology and Oceanography
Vol. 18, No. 1, January 1973
pp. 86-94
Made in the United States of America
pH BUFFERING OF PORE WATER OF RECENT ANOXIC MARINE SEDIMENTS

Sam Ben-Yaakov
Department of Geology, University of California, Los Angeles, 90024

ABSTRACT

A model is proposed to explain the relative pH stability in pore water of recent anoxic marine sediments. Oceanic data are not inconsistent with a model which assumes that the pH of the pore waters is controlled by the byproducts of organic decomposition, sulfate reduction, and precipitation of sulfide and carbonate. The model predicts that the pH of pore waters should remain in the range 6.9 to 8.3, which is in agreement with measured values.

Anoxic marine sediments generally contain active sulfate-reducing bacteria (ZoBell and Rittenberg 1948) which oxidize organic matter through the reduction of sulfate to sulfide. This process consumes sulfate from the pore water and produces a variety of protolytic species, such as H₂S and NH₃, whose amount is large in comparison to their amount in the original seawater. For example, Presley (1969) has found that the concentration of dissolved CO₂ in pore water of recent sediments (e.g. Saanich Inlet, B.C.) may reach the value of 60 mmole kg⁻¹, about 30 times the total CO₂ concentration in the overlying waters.

Despite the vast amount of protolytic species added to the pore waters during decomposition of organic matter, the pH of pore water of recent marine sediments is fairly constant and rarely exceeds the limits pH 7.0 to 8.2. This stability can better be exemplified, perhaps, if one considers the buffer capacity of seawater with respect to dissolved CO₂. This parameter (βCO₂) is defined here as the incremental change in total dissolved inorganic CO₂ required to shift the pH of a solution by one pH unit. The buffer capacity of average seawater was calculated using the method of Ben-Yaakov (1970a) for seawater with total alkalinity of 2.2 mmole kg⁻¹ (Fig. 1). Maximum buffer capacity is reached at low pH values below the first apparent dissociation constant of carbonic acid (pK₁) which is about 6.0 (Lyman 1957), but the buffer capacity around the pH of ocean and pore waters is very low and does not exceed 0.5 mmole kg⁻¹ pH⁻¹. That is, an addition of 0.5 mmole kg⁻¹ of CO₂ will reduce the pH of seawater by more than a pH unit. It is therefore surprising that the concentration of CO₂ in pore water of marine sediments may reach values of 60 mmole kg⁻¹, and yet show pH shifts less than one unit. It is evident that the increase in CO₂ must be counter balanced by other processes that tend to increase the pH of seawater (such as the production of ammonia and increase in total alkalinity) so that the net balance results in a fairly constant pH.

The purpose of this study is to examine the chemistry of pore water of anoxic marine sediments and to propose a model that many explain mechanisms controlling its pH. The derived relationships will then be compared to field data. The pH buffering model presented here differs from the model of Thorstenson (1970) in that it considers the roles of diffusion and chemical equilibria with solid phases and does not assume thermodynamic equilibria between all the species.

A METHOD FOR pH CALCULATION

It is convenient to divide the ions in a complex system, such as seawater, into protolytic and nonprotolytic species. Protolytic
ions are defined as ions of weak acids or weak bases; a "weak acid" ("weak base") is defined here as one whose total anionic (cationic) charge changes appreciably over the pH range of interest. The principle of charge neutrality requires that the net total charge (i.e. the difference between the total charge of the cation and the total charge of the anions) held by the protolytic ions \(Q_p\) be balanced against the net total charge held by the nonprotolytic ions \(Q_{nr}\). Namely:

\[Q_p + Q_{nr} = 0 \]

(1)

The value \(Q_p\) (or \(Q_{nr}\)) is closely related to the parameter "alkalinity" or "titration alkalinity" (Anderson and Robinson 1946) which is often used in chemical oceanography. However, this equivalency breaks down when the sample water contains weak bases such as ammonia. Total alkalinity \(T_A\) of a given solution is equal to the charge held by ions of weak acids (\(\text{HCO}_3^-\), \(\text{CO}_3^{2-}\), etc.) plus the concentration of the undissociated bases such as \(\text{NH}_4\text{OH}\), but does not include the concentration of \(\text{NH}_4^+\). These differences may result in some confusion and the term alkalinity will not be used here in conjunction with pore waters. In open ocean waters:

\[T_A = |Q_{nr}| = |Q_p|. \]

(2)

The total charge held by each part of the solution (\(Q_p\) and \(Q_{nr}\)) is invariant with respect to addition (or removal) of weak acids, weak bases, or gases to the solution. This is so because the addition of a weak acid, for example, does not add any net charge to \(Q_p\) since the charges of the added anions are balanced against the charge of the added hydronium ions.

The total charge held by a weak mono-basic acid \(Q_{a1}\) can be calculated from:

\[Q_{a1} = -T(\text{acid}) \frac{K_1}{K_1 + a\text{H}^+}, \]

(3)

where \(T(\text{acid})\) is the total concentration (dissociated plus undissociated species) of the acid in the solution, \(K_1\) is the apparent dissociation constant of the acid and \(a\text{H}^+\) is the activity of the hydronium ion. Apparent dissociation constants rather than thermodynamic constants are used to permit analysis in terms of concentration rather than activities. The error in applying the apparent constant (which can be defined only for solutions of constant composition) to pore water is probably insignificantly small, because the ionic strength of interstitial water of un lithified sediment is similar to that of the overlying seawater.

The total charge held by the ions of a dibasic acid can be calculated from:

\[Q_{a2} = -T(\text{acid}) \frac{K_1 a\text{H}^+ + 2K_1K_2}{[a\text{H}^+]^2 + K_1 a\text{H}^+ + K_1K_2}, \]

(4)

where \(K_1\) and \(K_2\) are the first and second apparent dissociation constants of the acid. Similarly, the total charge held by the cation of a monoacidic base can be calculated from the expression:

\[Q_{b1} = T(\text{base}) \frac{K'}{K' + (a\text{H}_2\text{O} \cdot K_w/a\text{H}^+)}, \]

(5)

where \(K_w\) is the thermodynamic dissociation constant of water and \(a\text{H}_2\text{O}\) is the activity of water at the given ionic strength.

The apparent dissociation constant of a weak acid is related to the thermodynamic constant by:

\[K' = \frac{K \cdot \gamma_{\text{B}^+}}{\gamma_{\text{H}^+}}, \]

(6)
where γB_{OH} and γB^+ are the activity coefficients of the base and its cation, respectively.

The pH of a solution containing both weak acids and weak bases can now be calculated from the expression:

$$Q_B = \Sigma Q_B + \Sigma Q_A + [H^+] - [OH^-], \quad (7)$$

where Q_B is the total charge held by the protolytic ions, ΣQ_B and ΣQ_A are the total charges held by the weak acids and weak bases, and $[OH^-]$ and $[H^+]$ are the concentrations of the hydroxyl and hydronium ions in solution. The right side of equation 7 is a function of the total concentrations of the weak acids and weak bases, their apparent dissociation constant and aH^+. If the concentrations, the apparent dissociation constants, and Q_B are known, one can solve the last equation for pH defined by:

$$\text{pH} = -\log (aH^+). \quad (8)$$

The concentrations of $[H^+]$ and $[OH^-]$, over the pH range of natural waters, are extremely small when compared to the total charge, Q_B. These species can, therefore, be eliminated from equation 7 without introducing an appreciable error in the results.

Equation 7 is a high order equation in aH^+ as Q_A and Q_B can be calculated from equations similar to equations 3, 4, and 5. It can be solved by an iteration procedure similar to the one proposed by Ben-Yaakov (1970b), in which pH is incremented until the magnitudes of the two sides of the equation approach each other to within the required precision.

Examination of equation 7 reveals that a given reaction can change the pH of a solution either by changing Q_B (which must be accompanied by a corresponding change in Q_{BP}) or by adding (or removing) a weak acid or base. An example of the first condition is pH buffering due to silicate reaction, as proposed by Garrels (1965):

$$2NaAlSiO_4 + H_2O + 2H^+ \rightleftharpoons 2Na^+ + Al_2SiO_4(OH)_4 + 4SiO_2. \quad (9)$$

In this reaction, H^+ is replaced by Na$^+$ in solution, which has the net effect of transferring charge from Q_B to Q_{BP}.

DEVELOPMENT OF A MODEL

The equilibrium pH of a parcel of pore water depends on the chemical reaction within it as well as on diffusive gain or loss of various components. To simplify the discussion, a closed system model will first be developed, and the effects of diffusion will be considered at a later stage.

Using the concept of average composition of marine organic matter (Fleming 1940), one can write a generalized reaction for decomposition of organic matter in marine sediments through bacterial sulfate reduction (Richards 1965) as:

$$\frac{1}{2} (CH_2)_{10} \to (NH_2) + H_2PO_4 + SO_4^{2-} \to CO_3^2 + HCO_3^- + HS^- + H_2O + \frac{1}{3} NH_3 + \frac{1}{2} H_2PO_4. \quad (10)$$

When writing this general reaction, one assumes that the ratio of C:N:P in average organic matter is 106:16:1 as proposed by Redfield et al. (1963). It should be emphasized, however, that slight variations in this ratio will not affect the results presented here. Equation 10 demonstrates that bacterial sulfate reduction should shift the pH of pore waters, as it involves the two reactions mentioned above. There is a net transfer of charge from Q_{BP} to Q_B (SO_4^{2-} is replaced by HS^- and HCO_3^-) and both weak acids (CO_3, H_2PO_4) and a weak base (NH_3, OH^-) are added to the waters. If the original alkalinity of the seawater (TA_o) is given, one can calculate the pH of the pore waters by solving equation 7 for these conditions. Namely,

$$2SO_4^{2-} - TA_o = TC \cdot F(CO_3) + TS \cdot F(H_2S) + TP \cdot F(H_2PO_4) + TN \cdot F(NH_3, OH) + TB \cdot F(H_2BO_3) - [OH^-] + [H^+]; \quad (11)$$

$\triangle SO_4^{2-}$ (negative value) is the amount of sulfate removed; TC, TS, and TP are the concentrations of total dissolved CO_3, total dissolved H_2S, and total dissolved H_2PO_4; TB is the total dissolved borate and TN the
total dissolved ammonium, respectively. The functions \(F \) are the expressions in equations 3, 4, and 5 which incorporate \(\delta H^+ \) and the apparent dissociation constants of the weak acids and bases.

Two additional reactions may shift the pH of the pore water: carbonate and silicate reaction. Solution or precipitation of calcium carbonate both changes the concentration of TC, and also removes (or adds) charges to \(Q_p \).

\[
\text{CaCO}_3 \rightleftharpoons \text{Ca}^{2+} + \text{CO}_3^{2-}. \quad (12)
\]

If such a reaction has taken place, one can calculate the equilibrium pH by correcting TC by the value \(\Delta \text{Ca}^{2+} \) and adding the charge \(-2 \Delta \text{Ca}^{2+} \) to the left side of equation 11. Similarly, one can take into account a silicate reaction by correcting for the charge added or removed (the net change in charge can be traced by examining the concentration of the cations).

An additional reaction that should be considered here is the precipitation of sulfides from the water, mainly in the form of iron sulfides (Berner et al. 1970). The net result of this reaction is to remove the weak acid \(\text{H}_2\text{S} \) from the system, which will therefore shift the pH of the waters (equation 11). Note that this reaction does not change \(Q_p \) if the iron enters the system as a weak base (an oxide) and the reaction, therefore, does not involve a charge transfer between the protolytic and nonprotolytic species.

Consider now a parcel of pore water (assumed to be a closed system) in which organic matter is decomposed through sulfate reduction. Using the ratios from equation 10, one can rewrite equation 12 as a function of the amount of sulfate reduced \((\Delta \text{SO}_4^{2-}) \) and the initial composition of the water:

\[
2\Delta \text{SO}_4^{2-} - \text{TA}_0 = (\text{TC}_0 - 2 \Delta \text{SO}_4^{2-}) \cdot F(\text{CO}_2) - \Delta \text{SO}_4^{2-} \cdot F(\text{H}_2\text{S}) \quad \frac{1}{\Pi_m} \Delta \text{SO}_4^{2-} \cdot F(\text{NH}_2\text{OH}) + (\text{TP}_0 - \frac{1}{\Pi_m} \Delta \text{SO}_4^{2-}) \cdot F(\text{H}_2\text{PO}_4) + \text{TB} \cdot F(\text{H}_3\text{BO}_3) - [\text{OH}^-] + [\text{H}^+] . \quad (13)
\]

This equation can now be solved for any stage in the process. The expected pH variation as a function of sulfate reduced was calculated (Fig. 2, curve a) for normal seawater of 35\% salinity at 25°C, \(\text{TA}_0 = 2.2 \text{ meq kg}^{-1}, \text{TC}_0 = 2 \text{ mmole kg}^{-1}, \text{TP}_0 = 0 \) (the original concentration of phosphate in seawater is negligibly small in comparison to that due to the decomposition of organic matter), and \(\text{TB} = 0.414 \text{ mmole kg}^{-1} \). The apparent dissociation constants of carbonic acid are Lyman’s (1957), the apparent dissociation constants of phosphoric acid were taken from Kester (1966), and the apparent constant of \(\text{H}_2\text{S} \) and \(\text{NH}_2\text{OH} \) are after Presley (1969). It should be emphasized that the accurate value of the various constants is unimprovable if only a rough estimation of pH is desired. A variation of 25\% in the constants will change the equilibrium pH by no more than 0.1 pH unit.

It is evident from Fig. 2 that the pH of the pore water under anoxic conditions is essentially buffered around a pH value of about 6.9, if a closed system is considered. The buffering effect results from
the fact that the various components enter the system in a constant proportion, when the initial concentration of weak acids and bases is small in comparison to the byproducts of decomposition. In this calculation (curve a) it was assumed that all the sulfide produced remains in solution. In reality, however, sulfide will precipitate, and the amount of sulfide to be removed will depend on the pH, pE, the concentration of the precipitating metal, and the solubility of the precipitate.

To examine this case, the calculation has been repeated for different concentrations of TS. Curve b in Fig. 2 summarizes the results for the model $TS = -0.2\Delta SO_4^{2-}$, whereas curve c represents the case in which all the sulfide disappeared from solution. The removal of sulfide from solution has the effect of increasing the pH of the pore waters, and the maximum pH to be expected is about 8.3. Curve b, which resembles the conditions found in anoxic marine sediments, predicts that the pH of these sediments should be around 7.9. It should be noted that although the concentrations of the various species are changed drastically during the sulfate reduction process, the maximum calculated shift is smaller than 1.5 pH units, and if precipitation of sulfide occurs, a pH change < 0.5 unit takes place. This range should be even narrower if one considers that CaCO$_3$ might precipitate at the higher pH range due to the increase of CO$_3^{2-}$ in the solution. Shifts in pH may also result from silicate reactions similar to the reaction of equation 9. The equilibrium pH can be calculated in this case by correcting the left side of equation 12 by the total charge transfer, which will be equivalent to the net change in concentration of the nonprotolytic cations.

The closed-system model, presented above, predicts that the maximum pH shift in pore water of anoxic sediment should be in the range pH 6.9–8.3. However, the real equilibrium condition depends not only on in situ chemical reactions (both in solution and between solution and solid phases), but also on ionic diffusion to and from the interstitial waters.

The diffusion process has, in general, the reverse effect of the sulfate reduction process and would tend, therefore, to restore the pH of the pore water to its original value. However, ionic migration in marine sediment is a complex function of many variables such as carbonate mobility in seawater, chemical reaction between ions and sediment (Kemper and Van Schalk 1966), and ionic interaction (Ben-Yaakov 1972). Since virtually no experimental data of ionic diffusion in marine sediment are yet available, it is not possible to estimate the pH shift due to diffusion. Nonetheless, equation 7 can be used to calculate the pH of pore waters irrespective of the diffusion process because it expresses the charge condition that must be maintained at all times.

TEST OF THE MODEL

The data to be studied here were obtained by Nissenbaum et al. (1972) during a comprehensive study of pore water of sediments from Saanich Inlet (British Columbia), a fjord characterized by a high rate of deposition (4 m 1,000 yr$^{-2}$) and high
PH BUFFERING OF ZONE WATER

Table 1. Major ion concentration in pore water of Suanch Inlet cores (from Nissenbaum et al. 1972)

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Cl⁻</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Sr²⁺</th>
<th>pH</th>
<th>Eh</th>
<th>LO₂</th>
<th>S²⁻</th>
<th>SO₄²⁻</th>
<th>NH₄⁺</th>
<th>PO₄³⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>moles/liter</td>
<td>mM/liter</td>
<td>(mV)</td>
<td>mM/liter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-15</td>
<td>0.49 0.38 0.0117 0.0077 0.0044 0.004 7.6 <100 0.27 0.0 22.9 0.15 0.064</td>
<td></td>
</tr>
<tr>
<td>15-50</td>
<td>0.50 0.50 0.0122 0.0057 0.004 0.002 8.0 <100 13.6 3.8 11.5 0.53 0.035</td>
<td></td>
</tr>
<tr>
<td>50-100</td>
<td>0.50 0.40 0.0117 0.0032 0.002 0.006 7.9 <100 23.7 5.0 0.0 2.05 6.155</td>
<td></td>
</tr>
<tr>
<td>100-150</td>
<td>0.50 0.40 0.0143 0.0024 0.001 0.007 8.0 <100 19.7 0.6 0.7 3.59 0.073</td>
<td></td>
</tr>
<tr>
<td>150-185</td>
<td>0.50 0.40 0.0125 0.0019 0.001 0.002 8.0 <100 8.6 1.2 0.3 4.26 0.122</td>
<td></td>
</tr>
<tr>
<td>Core 2</td>
<td>0.50 0.40 0.0025 0.0077 0.004 0.002 7.8 <100 40.6 0.0 0.13 4.05 0.120</td>
<td></td>
</tr>
<tr>
<td>75-100</td>
<td>0.50 0.40 0.0012 0.0077 0.005 0.001 7.8 <100 49.2 0.0 0.0 8.28 0.115</td>
<td></td>
</tr>
<tr>
<td>100-150</td>
<td>0.50 0.40 0.0013 0.0077 0.005 0.001 7.7 <100 50.0 0.0 0.0 10.0 0.091</td>
<td></td>
</tr>
<tr>
<td>150-185</td>
<td>0.50 0.40 0.0013 0.0077 0.005 0.001 7.7 <100 51.2 0.0 0.0 14.0 0.136</td>
<td></td>
</tr>
<tr>
<td>Core 3</td>
<td>0.50 0.40 0.0015 0.0077 0.005 0.001 7.8 <100 39.2 5.3 0.1 3.71 0.195</td>
<td></td>
</tr>
<tr>
<td>50-100</td>
<td>0.50 0.40 0.0015 0.0077 0.005 0.001 7.6 <100 40.5 4.4 0.0 4.00 0.280</td>
<td></td>
</tr>
<tr>
<td>100-150</td>
<td>0.50 0.40 0.0015 0.0077 0.005 0.001 7.6 <100 35.0 3.1 0.0 5.24 0.275</td>
<td></td>
</tr>
<tr>
<td>150-185</td>
<td>0.50 0.40 0.0015 0.0077 0.005 0.001 7.8 <100 36.2 3.1 0.0 6.41 0.420</td>
<td></td>
</tr>
<tr>
<td>190-200</td>
<td>0.50 0.40 0.0017 0.0077 0.005 0.001 7.8 <100 39.1 2.8 0.0 6.71 0.375</td>
<td></td>
</tr>
<tr>
<td>Core 4</td>
<td>0.50 0.40 0.0015 0.0084 0.008 0.002 7.7 <100 32.4 4.1 0.2 4.26 0.383</td>
<td></td>
</tr>
<tr>
<td>50-100</td>
<td>0.50 0.40 0.0012 0.0084 0.008 0.002 7.7 <100 34.6 4.1 0.1 7.92 0.338</td>
<td></td>
</tr>
<tr>
<td>100-150</td>
<td>0.50 0.40 0.0012 0.0084 0.008 0.002 7.8 <100 36.5 2.8 0.1 10.4 0.333</td>
<td></td>
</tr>
<tr>
<td>150-185</td>
<td>0.50 0.40 0.0012 0.0084 0.008 0.002 7.9 <100 42.4 3.4 0.0 9.8 0.565</td>
<td></td>
</tr>
<tr>
<td>200-210</td>
<td>0.50 0.40 0.0017 0.0077 0.005 0.001 7.9 <100 40.1 3.1 0.0 9.1 0.291</td>
<td></td>
</tr>
</tbody>
</table>

Concentrations of organic matter in the sediment (1–5% organic C). The sediment is anoxic, and sulfate is reduced by bacterial activity.

Table 1 shows some of the data of Nissenbaum et al. (1972). The concentrations of total dissolved carbon dioxide, phosphate, ammonia, and sulfate are extremely high in the interstitial water compared to those in seawater. Sulfate is depleted in all cores and completely disappears in some cases. The negative Eh value measured in three cores clearly indicates that the environment is highly reducing. Concentrations of major ions are fairly constant except for calcium and strontium, which are depleted in two cores (1 and 2), probably because CaCO₃ precipitated from the interstitial water and strontium coprecipitated with it (Kinsman and Holland 1969).

Equation 11 will be used as an idealized model for pH control in the sediment. The pH value, obtained by direct measurement, can be used to calculate the total net charge held by the protolytic ions (see equation 7) and compared to the expected Q_p.

$$Q_p = 2\Delta SO_4^{2-} - TA_0 - 2\Delta Ca^{2+}.$$ (14)

Figure 3 compares the calculated and predicted values for the data given by Nissenbaum et al. (1972). The scatter of the calculated points around the theoretical line is probably due to the uncertainties in the concentration of the protolytic species. The partial pressures of the gases CO₂ and H₂S are fairly high in the solution, and some of the gases may have escaped during handling. Nevertheless, the plot of Fig. 3 demonstrates, at least in a statistical
sense, that the data are not inconsistent with the model presented here.

The data of Table 1 also indicate that the concentration of sulfide is lower than expected by the model of equation 10. This may be explained by the fact that the concentration of sulfide is controlled by the solubility product of the precipitated metal sulfide. Such precipitation is responsible for the pH observed in the Saanich Inlet cores since, in its absence, the pH should have been around pH 6.9 (Fig. 2). However, pH 6.9 would be reached if the sediment is depleted in iron; data on interstitial water of carbonate sediments (Berner 1966) show that such pore water may reach this value.

It should be emphasized that the pH calculations presented here are for 25°C, as all the pH measurements were made at room temperature. The actual in situ pH values can be calculated from equation 11 by using the values of the constants at in situ temperatures. However, the temperature dependence should be small (Ben-Yaakov 1970b) and the maximum shift will probably be 0.2 pH units.

Berner et al. (1970) suggested that CaCO₃ precipitation from pore water of anoxic sediments is probably taking place in the laboratory after the waters have been squeezed from the sediments. Using equation 11, one can calculate the pH of the waters before precipitation by correcting Q₂ and TC by -2ΔCa²⁺ and ΔCa²⁺, and one can estimate the ionic product (IP = [Ca²⁺][CO₃²⁻]) before and after precipitation. These calculations are summarized in Table 2 in which the ratio IP/Ksp for calcite is also given. The value of the apparent solubility product, Ksp, is after McIntyre (1965). It is evident from Table 2 that the IP of calcium and carbonate would have been extremely high before precipitation took place. Although seawater may sustain supersaturation with respect to calcite (Ben-Yaakov 1970a; Gess 1970) it is likely that the carbonate will precipitate at such high IP values. The in situ values for the ratio IP/Ksp are somewhat lower than the value given in Table 2 owing to increase of solubility at low temperatures. One should also correct the ratio for pH at in situ temperatures. Accurate correction cannot be made, because the temperature coefficients of the various dissociation constants are not accurately known. However, even when temperature and pH effects are included, the calcite saturation ratio would be at least 20-30 times that of surface seawater. One may therefore expect that calcium carbonate will precipitate in situ under these conditions.

Apart from consideration of protolytic ions, sulfate, and calcium, a change in the concentration of one of the major dissolved ions will result in the proportional change in Qₙp and will therefore affect Q₂ (equation 1). This, in turn, will result in a pH shift. Changes in the concentrations of

Table 2. Comparison of pH, CO₃²⁻, and IP/Ksp (calcite) before and after CaCO₃ precipitated from the pore water of core 1 of Saanich Inlet (raw data from Frey 1968)

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>pH</th>
<th>pH*</th>
<th>CO₃²⁻ (mmole/kg)</th>
<th>CO₂* (mmole/kg)</th>
<th>IP/Ksp</th>
<th>IP/Ksp*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>7.6</td>
<td>7.82</td>
<td>0.083</td>
<td>0.12</td>
<td>1.18</td>
<td>2.1</td>
</tr>
<tr>
<td>40-50</td>
<td>8.0</td>
<td>8.46</td>
<td>1.16</td>
<td>2.68</td>
<td>12.27</td>
<td>47.15</td>
</tr>
<tr>
<td>85-100</td>
<td>7.9</td>
<td>8.60</td>
<td>1.70</td>
<td>5.27</td>
<td>10.20</td>
<td>110.3</td>
</tr>
<tr>
<td>135-150</td>
<td>8.0</td>
<td>8.71</td>
<td>2.623</td>
<td>9.43</td>
<td>18.68</td>
<td>165.90</td>
</tr>
<tr>
<td>175-185</td>
<td>8.0</td>
<td>8.67</td>
<td>3.129</td>
<td>10.60</td>
<td>11.01</td>
<td>186.48</td>
</tr>
</tbody>
</table>

aCalculated condition before precipitation took place.
major ions can be a result of chemical reaction and selective diffusion. In selective diffusion, one should distinguish between Q_{OP}-Q_{OP} diffusion and Q_{OP}-Q_{OP} diffusion. The first type will not cause a pH shift, whereas the others might (equation 7).

The results of the charge calculation presented above (Fig. 3) suggest that silicate reaction (such as the one of equation 9) and Q_{OP}-Q_{OP} diffusion are probably limited in this environment. Maximum scatter is 10 meq kg$^{-1}$ which sets the limit to the magnitude of silicate reaction and protolytic-nonprotolytic diffusion that might have taken place. The contribution of dissolved SiO$_2$ to pH buffering is also very small, as the maximum concentration of dissolved silica was about 2.7 mmoles liter$^{-1}$ (Presley 1969).

CONCLUSIONS

From the model, we can derive that the pH of interstitial water of recent anoxic marine sediments is controlled by four processes: 1) the presence of high concentrations of weak acids and bases which are by-products of organic decomposition; 2) transfer of charge from the nonprotolytic species to the protolytic ions (SO$_4^{2-}$→H$_2$); 3) precipitation of metal sulfides; 4) precipitation of calcium carbonate. The first two (which are dependent on bacterial sulfate reduction) will tend to shift the pH of pore waters toward 6.9. Precipitation of sulfate will increase the pH toward 8.3. Additional changes may result from selective diffusion of various ions as the diffusion of the ions is electrically coupled. However, the upper limit of pH is controlled by precipitation of calcium carbonate, as the concentration of CO$_3^{2-}$ increases manyfold at the higher pH range. Hence, the lower limit of pH in pore water, under these conditions, is controlled by sulfide precipitation, and the upper limit is probably controlled by CaCO$_3$ precipitation. This model predicts that the pH value of interstitial water of anoxic sediment will generally lie between 7.0 and 8.0. Silicate reaction may cause a further shift in pH, but the data given by Nissenbaum et al. (1972) do not support the assumption that this reaction is important in this area. The presence of organic acids in the pore water of anoxic sediments also probably has only a minor effect on the pH of the waters, since the measured pH values can be accounted for by the model without taking these compounds into consideration.

REFERENCES

Submitted: 16 May 1972
Accepted: 15 August 1972