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Abstract—A unified algebraic approach to the synthesis of 

generalized Fibonacci Switched Capacitor Converters (SCC) 
has been developed. The proposed approach reduces the power 
losses by increasing the number of target voltages. It is shown 
that the binary and Fibonacci SCC are private cases of the 
proposed approach. Furthermore, the proposed generalized 
SCC is built around the same switch network as the binary and 
Fibonacci SCC. This feature is extremely beneficial since it 
provides the option to switch between the different target 
voltages, thereby increasing the resolution of attainable 
conversion ratios. In the case of three flying capacitors, six new 
conversion ratios were introduced in addition to the thirteen 
that have been realized already. The theoretical results were 
verified experimentally. 

I. INTRODUCTION 
Switched capacitor converters (SCC), also known as 

charge pumps, have been found to be useful in low power 
applications due to their IC compatibility, relatively high 
efficiency and the lack of magnetic components that helps to 
lower the EMI. It is well known that the SCC exhibits high 
efficiency only when its output voltage, Vo, is very close to 
the target voltage, VTRG=M∙Vin, where M is the no-load 
conversion ratio. The SCC efficiency can be approximated 
by η=Vo/VTRG and decreases when the SCC is loaded. This 
efficiency drop is due to the inherent power losses, which 
can be modeled by an equivalent circuit (Fig. 1) that 
includes the target voltage source, VTRG, and a single 
equivalent resistor, Req. This resistor represents the losses 
due to power dissipation in switch resistances and 
capacitors’ ESR [1], [2]. The simplified model of Fig. 1 
does not take into account losses due to gate drives, leakage 
current and other parasitic effects which are not addressed in 
this work.  

 
Fig. 1: The equivalent circuit of SCC 

Neglecting the parasitic effects, high efficiency is obtained 
if Req is small. In this case, Vo will be very close to VTRG. In 
many applications there is a need to maintain a constant 
output voltage under input voltage variations or to provide 
different output voltages for different operational modes of 
a system. Such a voltage control can be accomplished by 
adjusting Req or M or both [3]. The highest efficiency will be 
obtained if Req is kept as small as possible and M is changed 
as required. The latter, however, is a difficult problem since 
M depends on the SCC topologies. Attempts to introduce 
multiple values of M have resulted hitherto in circuits with a 
large number of capacitors and switches that increase the 
power losses. An effective way to realize many target 
voltages is the combination of the binary [4],[5] and 
Fibonacci SCC [6],[7]. The behavior of this combination is 
depicted by the solid line in Fig. 2 for the resolution n=1…3, 
while the values on the x-axis represent the attainable 
conversion ratios. The objective of this study was to 
introduce additional target voltages to the combined SCC 
without adding capacitors or switches. The dashed line in 
Fig. 2 depicts the additional efficiency peaks that are 
obtained by the insertion of the generalized Fibonacci target 
voltages, developed in this study, between their existing 
counterparts.

 
Fig. 2: The expected total efficiency 
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II. SIGNED GENERALIZED FIBONACCI (SGF) 
REPRESENTATION 

The proposed approach to synthesis of generalized 
Fibonacci SCC is based on the novel number system 
described in this section. The generalized (h, k)-th Fibonacci 
numbers [8]-[10] are defined for i ≥ 2 and h ≤ k ≤ h+1 as: 

)( hkFFF kiii −++= −−1                  (1) 

where the initial values F2−k = F3−k = … = F0 = (h – k + 1), 
and F1 = 1. For h ≤ k ≤ 3, the first eight (h, k)-th Fibonacci 
numbers are given in Table I. Note, that first and third rows 
are the binary and regular Fibonacci numbers respectively.  
TABLE I: The generalized Fibonacci numbers 

h k Expression 1 2 3 4 5 6 7 8 1 1 Fi=2Fi−1 1 2 4 8 16 32 64 1281 2 Fi=Fi−1+Fi−2+1 1 2 4 7 12 20 33 54 2 2 Fi=Fi−1+Fi−2 1 2 3 5 8 13 21 55 2 3 Fi=Fi−1+Fi−3+1 1 2 3 5 8 12 18 27 3 3 Fi=Fi−1+Fi−3 1 2 3 4 6 9 13 19 
According to Daykin’s theorem [8]-[10], any positive 

number Fi ≤ Nn < Fi+1 can be represented uniquely as a sum 
of distinct (h, k)-th Fibonacci numbers:  

∑
=

+−=
n

j
jnjn FAN 0 1

                             
(2) 

where Aj is either 0 or 1; and n sets the resolution. 
Incrementing the index j, we get the largest (h, k)-th 
Fibonacci number, Fn+1, in the leftmost position, as shown in 
Table II for h = 1, k = 2, and n=6.  

TABLE II: The (1, 2)-th Fibonacci weights for n=6 

j 0 1 2 3 4 5 6 
Fn−j+1 33 20 12 7 4 2 1 

Since Daykin’s theorem is, in fact, an extension of 
Zeckendorf’s theorem [11], hereinafter the Daykin 
expansion is called the EZ-code. The main difference 
between the EZ-code and its binary counterpart is that not 
all combinations of "0" and "1" are permitted. Namely, two 
ones must be spaced with at least k−1 zeros, with the only 
exception for two rightmost ones, which can be spaced with 
h−1 zeros. 

For example: if h = 2 and k = 3 then every pair of "1"s in 
the EZ-code is spaced with at least two "0"s, except of the 
rightmost pair, which is spaced with at least a single "0" and 
may be followed by a string of "0"s. These two permitted bit 
patterns are illustrated in (3).   0 0 101 0 0 1 0 11 −− hk

    (3) 

Now, we define the Signed Generalized Fibonacci (SGF) 
representation for fractions Mn= Nn/Fn+1 in the range (0, 1) 
as follows.  

The expression (2) is normalized to the largest (h, k)-th 
Fibonacci number, Fn+1, and the coefficients Aj (j≥1) are 
allowed to take one of the three values of 0, 1, and −1, as 
was done in [12]. The SGF representation also includes a 
leading coefficient, A0, which could be either 0 or 1. 
Namely, 

∑
= +

+−+=
n

j n

jn
jn F

F
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where n sets the resolution. Due to Aj taking the extra 
value of −1, a number of different SGF codes can represent 
the same fraction Mn, for example: 

4/7 = 1 – 1∙(4/7) + 0∙(2/7) + 1∙(1/7) → {1 -1  0  1}    
4/7 = 1 – 1∙(4/7) + 1∙(2/7) – 1∙(1/7) → {1 -1  1 -1}         (5) 
4/7 = 1 + 0∙(4/7) – 1∙(2/7) – 1∙(1/7) → {1  0 -1 -1}    

These different codes are obtained by the spawning rule 
based on the identity 2Fi = Fi+1+Fi–1–Fi–k+1+Fi–k, which states, 
in fact, that the addition of two "1"s in the EZ-code induces, 
in the general case, four carries. The first carry goes one bit 
left, the second goes one bit right, while the third and the 
fourth go k–1 and k bits right respectively. Note that for k=1 
the above identity is reduced to the rule of binary addition, 2Fi = Fi+1, while for k=2 it is reduced to the rule of Fibonacci 
addition, 2Fi = Fi+1 + Fi−2.  

A rule for spawning the SGF codes: 
This rule is iterative and starts with the EZ-code of Mn. 

Skipping the zeros from the left, add "1" to the first Aj = 1. 
This will turn Aj to "0" and induce four carries. To keep the 
original Mn value add "−1" to the resulting Aj = 0 and 
generate thereby a new SGF code. The above procedure is 
repeated for all Aj = 1 in the original code and for all Aj = 1 in 
each new SGF code. 

Corollary 1: For a resolution n, the minimum number of 
SGF codes for a given Mn is n + 1.  

This is because each of the "1"s in the EZ-code with 
resolution n produces a new SGF code and four carries. 
Further iterations cause the carries to propagate, so that each 
"0" in the EZ-code is turned into a "1", which is also 
operated on to spawn a new code. Hence, the minimum 
number of codes is the original code plus n, that is n +1.  

Corollary 2: Each Aj = 1 in either the EZ-code or spawned 
SGF code yields at least one Aj =−1 in the same position j of 
another SGF code.  

This is because the spawning procedure involves the 
substitution of a "1" by a "−1". 

1 4/7 2/7 1/7  1   4/7 2/7 1/7  1 4/7 2/7 1/7
0 0  1 1 0 1  −1   1  0 1 −1 1

+1 +1    +1
0 1  0 1 1 0 0   0  0 1 0 0

−1 −1    −1
0 1 −1 1 1 −1 0 0  0 1 0 −1
Fig. 3: Spawning the SGF codes for M3=3/7 from the EZ-code {0 0 1 1}. 
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The example in Fig. 3 shows how three different SGF 
codes for M3=3/7 are spawned from the (1, 2)-th EZ-code  
{0 0 1 1}. Since k = 2, the reduced identity 2Fi = Fi+1 + Fi−2 is 
applied. Note that due to F0 = 0 all the overflows beyond the 
LSB are disregarded. The SGF codes for other M3, h=1, k=2 
are summarized in Table III. 

III. TRANSLATING THE SGF CODES INTO SCC TOPOLOGIES 
The rules for translating the SGF codes into SCC 

topologies follow the rules given in [4]-[7] for the binary 
and Fibonacci SCC. Consider a step-down SCC including a 
voltage source, Vin, a set of n flying capacitors, Cj, and an 
output capacitor, Co, which is paralleled to load Ro. For a 
given Mn the interconnections of Vin, Cj, and Co are carried 
out according to the following rules: 

1) If A0 = 1 then Vin is connected in a polarity that charges 
    the output. 
2) If A0 = 0 then Vin is not connected. 
3) If Aj = −1 then Cj is connected in a charging polarity 
    (same as the output).  
4) If Aj = 0 then Cj is not connected. 
5) If Aj = 1 then Cj is connected in a discharging polarity 
    (opposite to the output). 
The above rules are illustrated by translating the SGF 

codes of M3=3/7 to the topologies depicted in Fig. 4. 

 
Fig. 4: The topologies of generalized step-down Fibonacci SCC with 

M3=3/7. 

Let us assume that under steady-state conditions all the 
capacitors in the topologies of Fig. 3 are charged to 
constant, but unknown voltages V1, V2, V3, and Vo. To find 
these voltages we apply Kirchhoff’s Voltage Law (KVL) to 
each topology that leads to the next system of four linear 
equations: 
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Solving (6) we obtain the target and (1, 2)-th Fibonacci 
weighted voltages across the output and flying capacitors 
respectively: Vo=(3/7)Vin; V1=(4/7)Vin; V2=(2/7)Vin; V3=(1/7)Vin. 
Considering the fact that (6) is solvable it should also be 
solvable if Vin and Vo are interchanged. This means 
switching the input and output terminals and, in fact, 
converting the step-down SCC to a step-up SCC as shown 
in Fig. 5. 

 
Fig. 5: The topologies of generalized step-up Fibonacci SCC with 1/M3=7/3. 

The steady-state KVL equations for the SCC topologies of 
Fig. 5 are: 
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The solution of such a system is: Vo=(7/3)Vin; V1=(7/4)Vin; 
V2=(7/2)Vin; V3=(7/1)Vin. It is evident that the step-up target 
voltage Vo=(7/3)Vin is reciprocal to its step-down counterpart 
as in the case of binary and Fibonacci SCC. Note that for n 
flying capacitors and h = k = 2, the highest conversion ratio 
is equal to the regular Fibonacci number Fn+2. This case is of 
practical importance if there is a need to build a specific 
charge pump and was reported in [6], [7]. 

TABLE III: The SGF codes for fractions M3, h = 1, k = 2 

M3=1/7 M3=2/7 M3=3/7 M3=4/7 M3=5/7 M3=6/7 
A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3
0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0
0 0 1 -1 0 1 -1 0 0 1 -1 1 1 -1 0 1 1 -1 1 0 1 -1 1 1
0 1 -1 -1 1 -1 -1 1 1 -1 0 0 1 -1 1 -1 1 0 -1 0 1 0 -1 1
1 -1 -1 0 1 -1 0 -1 0 1 0 -1 1 0 -1 -1 0 1 1 -1 1 0 0 -1
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Thus, for the same number of the flying capacitors (n=3), 
we have introduced six new (1, 2)-th Fibonacci conversion 
ratios: {1/7, 2/7, 3/7, 4/7, 5/7, 6/7} in addition to the thirteen 
{1/8, 1/5, 1/4, 1/3, 3/8, 2/5, 1/2, 3/5, 5/8, 2/3, 3/4, 4/5, 7/8} of the 
binary and Fibonacci SCC, which should improve the 
efficiency as depicted in Fig. 2. 

IV. EXPERIMENTAL RESULTS 
The experimental setup (Fig. 6) followed the same design 

as in [4]-[7]. It was built around the CMOS bidirectional 
switches MAX4678 with an on-resistance of 1.2Ω, while 
C1=C2=C3=4.7μF, Co=470μF, and Vin=8V. The time slot 
allotted for each topology was 5μs. The output voltage was 
measured for Ro=300Ω and Ro=100Ω and is presented in 
Fig. 7(a) by a solid and a dashed line respectively. The SCC 
efficiency is presented in Fig. 7(b), for Ro=300Ω (diamonds) 
and Ro=100Ω (squares). 

 
Fig. 6: The switch network used for the generalized Fibonacci SCC. 
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Fig. 7: The output voltage (a) and efficiency (b) of the experimental SCC. 
The curve of the higher output voltage in (a) is for Ro=300Ω, while the one 
of the lower voltage is for Ro=100Ω. The points marked by “X” in (b) are 

estimates of minimum efficiency of a regulated version of proposed SCC in 
between target voltages and the diamonds and squares are experimental 

results for Ro=300Ω and Ro=100Ω respectively. 
 

As is evident from Fig 7(b), the measured efficiency is 
low for low conversion ratios, Mn. This could be explained 
by the fact that the real SCC has some constant losses, 
which have a larger effect at low Mn. Additional evidence 
for the constant losses is that for very low Mn the efficiency 
is lower for light loads.  

V. CONCLUSION AND DISCUSSION 
Based on Daykin’s theorem, a new SGF representation 

has been derived and then used for algebraic synthesis of 
generalized Fibonacci SCC. This new class of SCC reduces 
the power losses by increasing the number of target 
voltages. It is compatible with the previously developed 
binary and Fibonacci SCC and is built around the same 
switch network. This allows one to increase the density of 
efficiency peaks by switching between closely spaced 
neighbor target voltages. The multi-target feature is 
beneficial in both the cases of unregulated SCC with 
different output voltages and regulated SCC where the 
output is maintained at a constant voltage while subjected to 
load and input voltage variations. In the considered SCC 
with three flying capacitors six new conversion ratios were 
introduced in addition to thirteen already realized. The 
proposed SCC can be considered as hardware that solves a 
system of linear equations defined by the SGF codes.  

The efficiency at the target voltage will be maximal, 
limited by the equivalent resistor of the circuit and the 
parasitic losses. The experimental SCC that applied 1.2Ω 
switches reached above 90% efficiency for most of the 
target ratios. Regulation in between the target points can be 
obtained by duty cycle or/and frequency control, but at the 
expense of increased losses [1]-[3] and consequently a 
lower efficiency. However, considering the close proximity 
of the target voltages, the expected efficiency reduction is 
rather small. The worst case is the gain range between 1/7 
and 1/5 (Fig. 7). Applying the relationship η=Vo/VTRG, the 
minimum efficiency (just before reaching the 1/7 gain) is 
71.4%. For the same gain range, the minimum efficiency of 
the Fibonacci SCC [6], [7] would be 62.5%. Hence, 
considerable improvement is obtained even at the very low 
conversion ratios. For higher gains the expected minimum 
efficiency is considerably higher as is evident from Fig. 7(b) 
in which the estimated minimum efficiencies in between the 
target points are marked by “X”. It can thus be concluded 
that the proposed generalization of the multi-target SCC 
improves its performance. It is rather remarkable that this 
improvement is obtained at no cost since there is no need to 
add switches and/or capacitors to the circuit. 
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