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Abstract—These lecture notes describe the basic principles of 

positive-feedback sinusoidal oscillators. 
 

Index Terms—Barkhausen criterion, Laplace transform, 
natural frequencies, natural response, Nyquist stability criterion, 
passive network, positive-feedback linear sinewave oscillators, 
transient response, zero-input response. 

I. INTRODUCTION 

UR aim is to develop an electronic circuit that is able to 
produce sustained sinusoidal oscillations at a single 
frequency. No external ac source will drive the circuit; it 

should start from an initial state, and its zero-input response 
should approach a sinewave. We assume that in steady state, 
the circuit that we develop can be described by a linear, 
lumped, time-invariant (LLTI) small-signal equivalent model. 
We shall call such a circuit linear sine-wave oscillator. 

A. Terminology 
Before we start the development of an oscillator, let us pay 

some attention to the terminology accepted in basic circuit 
theory [1].  

We recall that the zero-input response of an LLTI circuit is 
also called the natural response. It is the response of the 
circuit to an initial state only, with all the independent sources 
suppressed.  

The response of the circuit to an external excitation only, 
with the initial state equals zero, is called zero-state or forced 
response.  

The complete response of the circuit is a superposition of 
the natural and the forced responses. The complete response 
of a stable circuit can be also divided into the transient 
response and the steady-state response.  

The circuit transient response is contributed by both the 
initial state and the external excitation. For a stable circuit, 
the transient response is decaying and the circuit steady state 
depends on the external excitation only. 

Note, that the oscillator that we develop should behave in a 
different manner compared to a stable circuit: its forced 
response is zero, and its steady state should be defined by its 
natural response. Hence, the oscillator natural response should 
not decay with time. Instead, it should approach a sinewave at 
a desired frequency and amplitude.  

B. Applications 
In terms of applications, oscillators, either sinusoidal or 

 
 

 

not, single or multi-frequency, linear or nonlinear, are 
generally used to synchronize a system (computers), to carry 
and detect information (communication), and to test a system 
(instrumentation). 

C. Principles of Operation  
Depending on the principle of operation, oscillators can be 

classified as negative resistance, parametric, relaxation, 
and positive-feedback. We shall treat here the latter type 
only.  

II. POSITIVE-FEEDBACK OSCILLATORS 
Positive-feedback oscillators employ an LLTI passive 

frequency-selective electric network (feedback network) 
β(jω) and an active, electronic amplifier AOL interconnected 
in a positive-feedback loop. We shall assume here that AOL is 
frequency-independent. 

A. Passive Feedback Network 
Recall that a passive electric network is that combined of 

passive elements: resistors, capacitors, and inductors. A 
passive resistor never dissipates and a passive capacitor and 
inductor never store negative energy [1]. A circuit or its 
elements are active if they are not passive. 

It is quite clear that being always stable, a passive network 
alone is not able to produce sustained oscillations: it has no 
poles in the right half of the Laplace plane, and, therefore, its 
natural response approaches zero. 

To illustrate this, we recall that the transfer function of a 
network in terms of the Laplace transform [1], 
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where s is the complex frequency, s=σ+jω, is defined as 
follows [1]:  
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where K is a constant, the zj's are called zeros, 
since 0)( =jzH , and the pi's are called poles, since 

∞=)( ipH , provided that ij pz ≠ .  
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Fig. 1. A parallel LCR network (a), locus of its natural frequencies (b), and its 
natural time response (c). The characteristic equation: s2+2αs+ω0

2= 

s2+( ω0/Q)s+ω0
2. The resonant frequency LC/10 =ϖ , L, and C are kept 

constant, and R varies. Q=R/(ω0L). Since R is never equal infinity, the time 
response is always decaying. H(jω0) never equals infinity.  

 
The partial-fraction extension of (2) can be written as  
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where the Ki's are called the residues of the particular poles 
[1]. 

Applying the inverse Laplace transform L-1[H(s)] to 
(3)—this is usually done with the help of a look up table—one 
can obtain the natural response of the network, 
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where the poles pi's are also called natural frequencies (or 
natural modes [2]) of the network. The pi's in (4) depend on 
the network topology, and the Ki's (possibly complex) depend, 
in addition, on the initial state. 

Recall that a network function (a particular transfer 
function from an input variable to an output variable) and the 
natural frequencies of a network can be determined by 
applying an excitation that does not change the natural 
structure of the circuit [1], [2]. This can be done either with an 
independent current source connected in parallel to a network 
branch, or with an independent voltage source 
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Fig. 2. A parallel LCR network employing negative-resistance (a), its natural 
frequencies (b), and its natural time response (c). Since RII(−R)=∞, H(jω0) 
does equal infinity. 
 
connected in series with a network branch. As far as the 
natural response is concerned, the above independent sources 
turn into an open or closed circuit, correspondingly; thus, not 
altering the natural structure of the network. 

Consider for example a passive LCR network of Fig. 1(a). 
Its network function,  
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can be found by connecting an independent current source 
iin(t), as shown in Fig. 1(a). 

Locus of the natural frequencies for the LCR network is 
shown in Fig. 1(b). This figure and (5) clearly demonstrate 
that the poles of a practical network (with a finite and positive 
R and, hence, α) are always located to the left of the jω axis. 
Or in other words, the denominator of (5) is never zero for any 
s with a nonnegative σ. As a result, a practical LCR network 
cannot generate a sustained sinewave. Its output is always 
decaying, as shown in Fig. 1(c), and its natural response 
approaches zero. 

One way to reach nondecaying oscillations is to compensate 
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for the network positive (passive) resistance R (read energy 
losses) with an element having negative (active) resistance –R 
(read energy pumping into the circuit), as shown in Fig. 2(a). 

 Negative-resistance oscillators are based just on this idea. 
They employ nonlinear electronic elements, such as the tunnel 
diode, having negative slope in a part of their voltage-current 
characteristic, to obtain—for relatively small signals—
negative resistance.  

Negative-resistance approach to oscillators is generally 
used at radio (RF) and especially at microwave frequencies, 
where it becomes difficult to construct a feedback circuit 
without introducing excess phase shift.  

At relatively low frequencies, from kilohertz up to hundreds 
of megahertz, positive-feedback approach is generally used. 

B. Feedback Loop  
Another way to make the above LCR network to oscillate 

continuously is to integrate it in a feedback loop, as shown in 
Fig. 3(a), such that the total network function becomes 
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Note that contrary to (5), the denominator of (6) can reach 

zero for an s1 with a non-negative σ, namely, it happens when 
the loop gain AOLβ(s1)=1.  

C. Barkhausen criterion  
To reach sustained oscillations in steady state, the loop gain  

AOLβ(s1) should be equal to unity at a physical, ω —not 
complex, s —frequency, namely,   
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where )( 11 ϖβ jAOL  and ω1 are the oscillator's steady-state 
loop gain and frequency; index 1 emphasizes that in steady 
state the loop gain )( 11 ωβ jAOL  is unity.  
Since for a physical frequency, σ =0, the oscillator's steady-
state poles (natural frequencies) are located directly on the jω 
axis of the s plane, as shown in Fig. 3(b), where according to 
(6) and (7), ∞=)( 1ωjH . 

Equations (7) determine the steady-state oscillation 
conditions and are called the Barkhausen criterion. 

D. Initial Pole Location 
 We now have to decide on the pole location in the initial 

state. Let us first suppose that there should be no difference 
between the initial and final pole locations; in the both cases 
the poles can be located directly on the jω axis.  

Magnitude of the natural response (4) in this case [see Fig. 
3(b)] is a function of the initial state. It is an undesirable  
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Fig. 3. Positive-feedback oscillator (a), locus of its natural frequencies as a 
function of the lop gain AOLβ(jω) (b), its natural time response (c), and 
nonlinear properties of the amplifier AOL (d). 
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situation for the three following reasons. First, we do not 
intend to supply the circuit with additional means to control 
the initial state. Second, any circuit is subject to disturbances 
and noise. In the case of an oscillator, the uncontrolled initial 
state, disturbances, and noise will make its steady state 
unpredictable. Third, it is impossible to provide the initial pole 
locations exactly on the jω axis because of the non-zero 
tolerances of the circuit components.   

Since it is undesirable to locate the oscillator's initial-state 
poles directly on the jω axis, they should be located in the 
right half of the s plane at a distance from the jω axis. This 
distance [see Fig. 3(b)] should be large enough to ensure the 
desirable pole location for any deviations of the circuit 
element values within their tolerances and temperature ranges. 

The oscillator in this case will generate an increasing 
sinewave. When the sinewave magnitude will become 
sufficiently large, a negative feedback should stabilize it by 
shifting the poles towards the jω axis, as shown in Figs. 3(b) 
and (c).  

It is undesirable to locate the poles in the left half of the s 
plane because, in this case, the oscillator steady state will be 
zero. 

To summarize the above: we want the oscillator to be 
unstable in the initial state and conditionally stable in the 
steady state. We never want it to be stable. 

The simplest—but not always the best (see the concluding 
part of this Section)—way to determine the initial poles 
location in the right half of the s plane and to provide their 
movement to the jω axis, when the oscillations approach their 
steady-state magnitude, is to use the nonlinear properties of 
the amplifier AOL, as shown in Fig. 3(d). 

In the initial state, the small-signal value of AOL is simply 
set to be greater than it is needed to satisfy the Barkhausen 
criterion (7), 1 OLOL AA > . As a result, the initial pole location 
will be either to the right or to the left of the jω axis [see Fig. 
3(b)], depending on the specific behavior of the feedback 
transmission β(s). 

For the reasons discussed above, β(s) for which the initial 
poles are in the left half of the s plane should not be employed 
in our design. Below (see Section III), we will show how one 
can easily decide whether 1 OLOL AA >  shifts poles to the right 
or to the left of the jω axis. 

E. Negative Feedback 
Meanwhile, let us suppose that 1 OLOL AA >  shifts the poles 

as desired, to the right of the jω axis. This forces unstable 
operation of the oscillator. It starts from an initial state and 
builds up its oscillations, as shown in Fig. 3(c). When the 
oscillations became large enough and reach nonlinear part of 
the amplifier transfer characteristic AOL=So/Sε in Fig. 3(d), the 
amplifier gain AOL decreases (negative feedback) and  
approaches 1 OLA . Accordingly, the poles move towards their 
steady-state location on the jω axis, as shown in Fig. 3(c). The 
steady state is reached when the amplifier gain at  
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Fig. 4. The effect of disturbances and noise on the oscillator output. 
 
 
frequency ω1 equals 1 OLA , and the Barkhausen criterion (7) is 
satisfied. 

F. The effect of Disturbances and Noise 
A disturbance and noise affecting the circuit can be 

translated to the input of the oscillator and represented by an 
equivalent source Sin, as shown in Fig. 3(a).  

The source Sin will contribute to the oscillator output: it will 
either decrease or increase the oscillation caused by the initial 
state (the natural response).  

Recall that a circuit having a single couple of purely 
imaginary poles is conditionally stable. (A circuit having more 
than a couple of equal imaginary poles has linearly increasing 
natural response and, hence, is unstable.) A conditionally 
stable circuit has a bounded steady state only if it is not 
excited at the frequency of the poles (see Fig. 4). If the circuit 
is excited at the frequency of the poles then its forced 
response linearly increases with time.  
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Fig. 5. Mapping of the right half of the s plane: the Principle of the Argument. 
 

Let us suppose now that the spectrum of the disturbance 
and/or noise is continuous and always includes a sinusoidal 
excitation at the frequency of the oscillator poles. This 
excitation will contribute a linearly increasing part (forced 
response) to the oscillator natural response as shown in Fig. 4. 
Depending on the phase difference between the natural and 
forced responses, the oscillator output will either increase 
immediately after adding the external excitation or first 
decrease and after that increase (see Fig. 4).  

The decreased oscillations will increase the amplifier gain 
AOL above its steady state value 1 OLA , and the increased gain 
will shift the oscillator poles in the right half of the s plane. 
The oscillator natural response will increase, compensate for 
the disturbance or noise, and the poles will move back 
towards the jω axis (recall Fig. 3).  

The increased oscillations will decrease the amplifier gain 
AOL below its steady state value 1 OLA , and the decreased gain 
will shift the oscillator poles in the left half of the s plane. The 
oscillator natural response will decay, and the oscillator steady 
state will be defined by its steady state response to the input 
signal Sin in accordance with the network function (6).  

Since in the new steady state, caused by a disturbance or 
noise, the loop gain )( 1 ωβ jAOL  will be smaller than unity, 
the network function (6) will be finite, and so will be the 
oscillator output. The specific value of the amplifier gain AOL 
in the new steady state and thus the specific value of the 
network function and the oscillator output depend on the 
magnitude of the disturbance or noise and on the nonlinear 
properties of the amplifier.  

Note that under influence of a disturbances or noise, the  
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Fig. 6. The Nyquist stability criterion. 
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Fig. 6. Examples for an unstable (a) and stable (b) networks. Note that in the 
both cases the loop gain AOLβ(jω1) can be greater than unity. 
 
oscillator operates as a frequency-selective amplifier with the 
total gain described by the network function (6). At the 
frequency of oscillation, the total gain is at maximum and, at 
the other frequencies, it decreases in accordance with the 
frequency behavior of the feedback transmission )( ωβ j . The 
disadvantage of the use of the nonlinear properties of the 
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amplifier is that its output signal becomes distorted.  
To avoid distortions, it is better to control with the help of a 

negative feedback the value of β(jω1) in such a way that the 
amplifier output is always within one third of its full scale [see 
Fig. 3(d)]. This can be done, for example, by using in the 
feedback network photo- or thermo-resistors, which values 
depend on average, not instant, magnitude of oscillations. 

III. THE NYQUIST STABILITY CRITERION 
We shall finally illustrate how one can easily decide 

whether 1 OLOL AA >  shifts the oscillator poles from their 
steady-state position on the jω axis to the right or to the left of 
this axis. 

 
  

Let us first assume that the denominator in (6) has only two 
zeros: 
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Let us also assume that the two zeros of Q(s) lie in the right 
half of the s plane, as shown in Fig. 5. We consider as well 
that for a passive β(jω), Q(s) has no poles in the right half of 
the s plane.  

If we now encircle the entire right half of the s plane with a  
  

closed contour (so called Nyquist D-contour), as shown in 
Fig. 5(a), another closed contour, Q(jω), is created in the 
complex Q(s) plane around its origin, Q(s)=(0, j0), as shown 
in Fig. 5(b). 

The function Q(s) is said to map the right half of the s plane 
inside the contour Q(jω) in the Q(s)  plane. [Note also that 
contour Q(jω) in Fig. 5(b) encircles the origin of the Q(s) 
plane in the same direction as the right half of the s plane is 
encircled in Fig. 5(a).] 

The above result is known as the Principle of the 
Argument. This principle can be easily understood if one 
considers an opposite case. Consider, for example, that Q(jω) 
does not encircle the origin of the Q(s) plane, as sown in Fig. 
5(c). In this case, the vector Q(jω) will not rotate by 720o for 

∞<<−∞ ϖj  as Fig. 5(a) and (8) dictate. 
We are now ready to formulate the Nyquist stability 

criterion for a positive-feedback oscillator combined of a 
stable feedback network β(jω) and a stable amplifier AOL: 
such an oscillator is unstable if its loop gain AOLβ(jω) does 
encircle the point (1, j0), as shown in Fig. 6. 

Fig. 6 illustrates that AOLβ(jω1)>1 can cause both unstable 
and stable operations of a circuit. Or in other words, 
AOLβ(jω1)>1 can shift the circuit's poles either to the right or to 
the left of the jω axis, depending on the specific behavior of 
the feedback transmission β(jω). 
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