Modeling of the magnetoelectric effect in finite-size three-layer laminates under closed-circuit conditions

E. Liverts,1,2,a) M. Auslender,2 A. Grosz,2 B. Zadov,2 M. I. Bichurin,3 and E. Paperno2

1Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
2Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
3Department of Design and Tecnology of Radioequipment, Novgorod State University, Veliky Novgorod 173003, Russia

(Presented 20 January 2010; received 30 October 2009; accepted 11 December 2009; published online 10 May 2010)

A theoretical model is presented for the low-frequency magnetoelectric (ME) effect in three-layered magnetostriective-piezoelectric laminates. The model considers both the laminate finite size and the detection circuitry loading (closed-circuit conditions). The model development is based on a system of electroelasticity and magnetoelectroelastic equations and takes into account the boundary conditions at the inner and outer surfaces of the laminate. An averaging method is used to estimate the effective parameters of the laminate materials. The ME voltage coefficient for transverse fields is obtained theoretically. The obtained solution allows us to set up the laminate equivalent electrical circuits and to find their electrical parameters in terms of the physical properties of the laminate and its geometry. © 2010 American Institute of Physics. [doi:10.1063/1.3362925]

I. INTRODUCTION

Multiferroic materials have drawn increasing interest due to their potential for many modern devices, such as sensors, gyrotrons, energy harvesters, etc. The magnetoelectric (ME) effect in single-phase or composite multiferroics is defined as the induced polarization response to an applied magnetic field. The ME effect in multiferroic laminates is found to be several orders of magnitude stronger than that in single-phase multiferroics (see review1 and references therein). In this work, we develop a theoretical model describing the ME interactions in three-layer magnetostriective-piezoelectric laminates. In contrast to previously reported studies,1,2,4,5 we consider the finite size of the laminates. We also assume that in practical cases the structure is under closed-circuit conditions.

We consider a three-layered disk of radius R and thickness t. The top and bottom surfaces of the inner piezoelectric layer of relative, compared with t, thickness t_m are assumed to be ideally bonded to the piezomagnetic layers of relative thickness t_m/2. Such a system can easily be synthesized by bonding the slices of piezoelectric ceramics [e.g., BaTiO_3 and lead zirconate titanate (PZT)] and Ni.3,5 For the sake of simplicity, we consider a poled state in both the piezoelectric and magnetostriective phases with the poling directed along the out-of-sample plane orthogonal z axis. The applied ac magnetic field, ∆H, is also assumed directed along z axis. As a result, the induced by ∆H polarization, ∆P, also has the same direction, so-called longitudinal ME operation mode.1

II. MAGNETOELECTRIC COUPLING IN UNCLAMPED THREE-LAYERS

In the low-frequency operation mode, the electric and magnetic fields, as well as the mechanical stresses and strains in the magnetostriective-piezoelectric laminates have to be found by solving a joint set of magnetoelectrostatic Maxwell equations (1) and the equations of elastic equilibrium with the compatibility conditions (2), simultaneously

\[\nabla \cdot \mathbf{D} = \rho, \quad \nabla \times \mathbf{E} = 0, \quad \nabla \times \mathbf{H} = 0, \quad \nabla \cdot \mathbf{B} = 0, \]

where \(\mathbf{D} \) is the electric displacement, \(\rho \) is the free electric charge density, \(\mathbf{E} \) is the electric field strength, \(\mathbf{B} \) is the magnetic induction, and \(\mathbf{H} \) is the magnetic field strength

\[\frac{\partial \sigma_{ik}^{p,m}}{\partial x_k} = 0, \quad \Delta u_{ik}^{p,m} + \frac{\partial^2 u_{il}^{p,m}}{\partial x_l \partial x_k} - \frac{\partial^2 u_{il}^{p,m}}{\partial x_k \partial x_l} - \frac{\partial^2 u_{il}^{p,m}}{\partial x_i \partial x_j} = 0, \]

where \(\sigma_{ik}^{p,m} \) and \(u_{ik}^{p,m} \) are the mechanical stress and strain tensor components in either piezoelectric or magnetostriective phases, the indexes \(p \) and \(m \) stand for the piezoelectric and magnetostriective materials, respectively, while \(i \) and \(k \), equal to 1, 2, and 3, denote spatial coordinates \(x, y, z \). The summation convention applies to the suffixes occurring twice in the vector and tensor expressions.

Assuming that both the piezoelectric and magnetostriective layers are sufficiently thin, i.e., \(t \ll R \), the deformation may be regarded as uniform over their thickness. The strain tensors are then the functions of \(r \) and \(\vartheta \) (the \(r-\vartheta \) plane being that of the laminate) and are independent of \(z \). The boundary conditions on both the top and bottom surfaces of the laminate are \(\sigma_{ik}^{m} n_k = 0 \), or, since the normal vector is parallel (or anti-parallel) to \(z \) axis, \(\sigma_{ik}^{m} = \sigma_{ik}^{m} = 0 \). Due to the boundary conditions on both the surfaces between the mag-
netostrictive and piezoelectric layers \(\sigma_{rr}^m, \sigma_{\theta\theta}^m = \sigma_{\phi\phi}^m \), the quantities \(\sigma_{rr}^m \) must also be small throughout the thickness of the piezoelectric layer, and we can therefore take them as approximately zero everywhere in the laminate (a state of plane stress). Furthermore, assuming the effective compliances for both the piezoelectric and piezomagnetic layers to be isotropic in the laminate plane, the strain tensor and the stress tensor components in both the piezoelectric and piezomagnetic layers are related to the electric and magnetic field strengths, \(E_z \) and \(H_z \), in the corresponding layers via so-called coupling equations

\[
\begin{align*}
u_{rr}^m &= \frac{1}{K_m}(\sigma_{rr}^m - \nu_m \sigma_{\theta\theta}^m) + d \delta E_z, \\
u_{\theta\theta}^m &= \frac{1}{K_m}(\sigma_{\theta\theta}^m - \nu_m \sigma_{rr}^m) + q \delta H_z, \\
u_{\phi\phi}^m &= \frac{1}{K_m}(\sigma_{\phi\phi}^m - \nu_m \sigma_{rr}^m) + d \delta E_z, \\
u_{r\phi}^m &= \frac{1}{K_m}(\sigma_{r\phi}^m - \nu_m \sigma_{rr}^m) + q \delta H_z.
\end{align*}
\]

where \(K_{m,r} \) is Young’s modulus, \(\nu_{m,r} \) is Poisson’s ratio, and \(d \) and \(q \) are the components of the converse piezoelectric and piezomagnetic coefficients tensor. Using a strict condition of \(\sigma_{zz} = 0 \), we thus eliminate the displacement \(u_z \); one can then regard the laminate as a two-dimensional medium (an “elastic plane”) and reduce the three-dimensional displacement vector \(\mathbf{u} \) to a two-dimensional vector with the only one, due to the axial symmetry of the problem, component \(u_r \). For the conditions of a plane stress problem, a stress function \(\chi \) satisfying the biharmonic equation can be introduced. To see it, one should notice that for the plane stress conditions, Eq. (2) can be written as

\[
\frac{\partial \sigma_{rr}}{\partial r} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} = 0, \quad \frac{\partial u_{rr}}{\partial r} - \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_{\theta\theta}}{\partial r} \right) = 0.
\]

Introducing the stress function defined by

\[
\sigma_{rr} = \frac{1}{r} \frac{\partial \chi}{\partial r}, \quad \sigma_{\theta\theta} = \frac{\partial^2 \chi}{\partial r^2},
\]

one finds that \(\chi \) satisfies the biharmonic equation \(\Delta \Delta \chi = 0 \), \(\chi = C r^2 \), and \(\sigma_{rr} = \sigma_{\theta\theta} = 2 C \). To satisfy the boundary condition of \(\sigma_{rr} = 0 \) at \(r = R \), one should consider the laminate as effective medium with averaging stress tensor components, which yields

\[
\sigma_{r\prime}^\prime t_m + \sigma_{r\prime}^\prime t_p = 0, \quad \sigma_{\theta\theta}^\prime t_m + \sigma_{\phi\phi}^\prime t_p = 0.
\]

Furthermore, because of the boundary conditions at the interface surfaces between the magnetostrictive and piezoelectric layers the displacements in both the phases have to be equated (perfect bonding). This gives the two following equations:

\[
\frac{1}{K_m}(\sigma_{rr}^m - \nu_m \sigma_{\theta\theta}^m) + q \delta H_z = \frac{1}{K_p}(\sigma_{rr}^p - \nu_p \sigma_{\phi\phi}^p) + d \delta E_z,
\]

\[
\frac{1}{K_m}(\sigma_{\theta\theta}^m - \nu_m \sigma_{rr}^m) + q \delta H_z = \frac{1}{K_p}(\sigma_{\phi\phi}^p - \nu_p \sigma_{rr}^p) + d \delta E_z.
\]

Assuming that the charges present only at the metallic (Ni) piezomagnetic layer surfaces and applying standard procedure to the first equation in Eq. (1), we obtain

\[
d(\sigma_{rr}^m + \sigma_{\theta\theta}^m) + k \delta E_z = \frac{Q}{\pi R^2},
\]

where \(Q \) is the total charge of the magnetostrictive layer (for open-circuit conditions \(Q = 0 \) and \(k \) is the permittivity. To take into account the losses, we define the complex permittivity as \(k = k’ + j(k’’ + \sigma / \omega) \), where \(k’’ \) describes the losses associated with the dielectric polarization, and \(\sigma \) describes the losses associated with the current flow. Solving Eqs. (5)–(7) with respect to \(\delta E_z \), and integrating the solution over \(z \) from the bottom to the top of the piezoelectric disk and then differentiating it in time, we obtain the Fourier transform of the ME voltage across the laminate

\[
V_{ME} = \alpha_{M33} \delta H_z - I_{ME} Z_{eff} = V_m - I_{ME} Z_{eff},
\]

where \(\alpha_{M33} \) is the longitudinal ME voltage coefficient, \(I_{ME} \) is the electric current flowing through the laminate, \(V_m \) is the voltage induced by the external magnetic field, and \(Z_{eff} \) is the effective impedance of the laminate. The longitudinal ME voltage coefficient and the effective impedance can be given as

\[
\alpha_{M33} = \frac{2 d q t_p (1 - t_p)}{K_p} \left[\frac{1}{K_p} + \frac{1}{K_m t_p} \right] k - 2 d^2 (1 - t_p),
\]

\[
Z_{eff} = \frac{t_p}{j \omega C_{eff}} \left[\frac{1}{K_p} + \frac{1}{K_m t_p} \right]^{-1}
\]

where \(Z_{eff} \) represents the active part of impedance \(Z_{eff} \), and \(C_{eff} \) represents its reactive part. The very structure of Eq. (8) reflects the fact that, in the ME laminate, the dielectric polarization of the piezoelectric phase is induced by both the induced stresses and electric field. Considering Eq. (8), a Thévenin equivalent circuit of the laminate loaded by the input impedance of a preamplifier, \(Z_{in} \), can be drawn (see Fig. 1). \(I_{ME} \) in this circuit should be equal to \(V_m / (Z_{eff} + Z_{in}) \). As a result, Eq. (8) can be rewritten as follows:

\[
V_{ME} = \alpha_{M33} \delta H_z \left[1 - \frac{Z_{eff}}{Z_{in} + Z_{eff}} \right],
\]

which is a theoretical model of the voltage across the laminate as a function of the applied magnetic field, physical properties and dimensions of the laminate, and the input impedance of the preamplifier.
The field, δH_z, inside the piezomagnetic layers can be related to the external magnetic field by using existing approximations for thin ferromagnetic disks or oblate spheroid.\(^8\) It should be noted that, in contrast to Ref. 9, we obtain the laminate impedance Z_{eff} directly in terms of physical properties, $K_{m,p}$, $\nu_{m,p}$, d, q, k, and losses ($\tan \delta$) of the magnetostrictive and piezoelectric layers and their geometry.

III. CONCLUSIONS

Simplified theoretical models for magnetostrictive-piezoelectric laminates have been obtained. This models considers the finite size of the laminates and the closed-circuit conditions. The models include both the analytical description of the laminates and the equivalent electrical circuits. The equivalent circuits and their electrical parameters have been derived from Eq. (8), which is obtained by solving Eqs. (1) and (2), based on the first-principles theory, under appropriate boundary conditions. To gain an insight into the ME effect in a finite size laminate, we have considered a thin disk thus adopting the plane stress state approximation,\(^5\) where the stresses depend only on r. To further simplify the task, we have assumed that the stresses, strains, and electric field are uniform. After that, the above discussed strict conditions at $r=R$ could hardly be fulfilled, so we have to average the stresses, see Eq. (5). Though this approximation is rough, the solution, Eq. (8), has clear physical sense. Moreover, Z_{eff} given by Eq. (10) allows one to compare the theoretical predictions against measurements.

It is important to note that the suggested approach allows one to further correct Eqs. (9) and (10), by considering different laminate shapes, and properly including elastic loading conditions (unclamped, clamped samples) as well as to explore the dependence of the ME voltage on the interface bonding imperfections. The suggested theoretical models can be very helpful and instructive for designing various types of ME devices.

\[^{3}\text{M. I. Bichurin, V. M. Petrov, and G. Srinivasan, J. Appl. Phys. 92, 7681 (2002).}\]
\[^{7}\text{Y. Ni, S. Priya, and A. G. Khachatryan, J. Appl. Phys. 105, 083914 (2009).}\]
\[^{8}\text{J. A. Osborn, Phys. Rev. 67, 351 (1945).}\]
\[^{9}\text{Z. Xing, J. Li, and D. Viehland, Appl. Phys. Lett. 91, 182902 (2007).}\]