Homework Set #1
Entropy rate, directed information

1. Monotonicity of entropy per element.

For a stationary stochastic process X_1, X_2, \ldots, X_n, show that

(a) $\frac{H(X_1, X_2, \ldots, X_n)}{n} \leq \frac{H(X_1, X_2, \ldots, X_{n-1})}{n-1}$.

(b) $\frac{H(X_1, X_2, \ldots, X_n)}{n} \geq H(X_n|X_{n-1}, \ldots, X_1)$.

Solution: Monotonicity of entropy per element.

(a) By the chain rule for entropy,

\[
\frac{H(X_1, X_2, \ldots, X_n)}{n} = \frac{\sum_{i=1}^{n} H(X_i|X^{i-1})}{n} = \frac{H(X_n|X^{n-1}) + \sum_{i=1}^{n-1} H(X_i|X^{i-1})}{n} = \frac{H(X_n|X^{n-1}) + H(X^{n-1})}{n}. \tag{1}
\]

From stationarity it follows that for all $1 \leq i \leq n$,

\[H(X_n|X^{n-1}) \leq H(X_i|X^{i-1}),\]

which further implies, by averaging both sides, that,

\[
H(X_n|X^{n-1}) \leq \frac{\sum_{i=1}^{n-1} H(X_i|X^{i-1})}{n-1} = \frac{H(X^{n-1})}{n-1}. \tag{2}
\]

1
Combining (1) and (2) yields,
\[
\frac{H(X_1, X_2, \ldots, X_n)}{n} \leq \frac{1}{n} \left[\frac{H(X_1, X_2, \ldots, X_{n-1})}{n-1} + H(X_1, X_2, \ldots, X_{n-1}) \right]
\]
\[
= \frac{H(X_1, X_2, \ldots, X_{n-1})}{n-1}.
\]

(b) By stationarity we have for all 1 ≤ i ≤ n,
\[
H(X_i|X^{n-1}) \leq H(X_i|X^{i-1}),
\]
which implies that,
\[
H(X_n|X^{n-1}) = \frac{\sum_{i=1}^{n} H(X_n|X^{n-1})}{n} \leq \frac{\sum_{i=1}^{n} H(X_i|X^{i-1})}{n} = \frac{H(X_1, X_2, \ldots, X_n)}{n}.
\]

2. Pairwise independence.

Let \(X_1, X_2, \ldots, X_{n-1} \) be i.i.d. random variables taking values in \(\{0, 1\} \), with \(\Pr\{X_i = 1\} = \frac{1}{2} \). Let \(X_n = 1 \) if \(\sum_{i=1}^{n-1} X_i \) is odd and \(X_n = 0 \) otherwise. Let \(n \geq 3 \).

(a) Show that \(X_i \) and \(X_j \) are independent, for \(i \neq j, i, j \in \{1, 2, \ldots, n\} \).
(b) Find \(H(X_i, X_j) \), for \(i \neq j \).
(c) Find \(H(X_1, X_2, \ldots, X_n) \). Is this equal to \(nH(X_1) \)?

Solution: Pairwise Independence.

\(X_1, X_2, \ldots, X_{n-1} \) are i.i.d. Bernoulli(1/2) random variables. We will first prove that for any \(k \leq n - 1 \), the probability that \(\sum_{i=1}^{k} X_i \) is odd is 1/2. We will prove this by induction. Clearly this is true for \(k = 1 \). Assume that it is true for \(k - 1 \). Let \(S_k = \sum_{i=1}^{k} X_i \). Then
\[
P(S_k \text{ odd}) = P(S_{k-1} \text{ odd})P(X_k = 0) + P(S_{k-1} \text{ even})P(X_k = 1)
\]
\[
= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2}
\]
\[
= \frac{1}{2}.
\]
Hence for all $k \leq n - 1$, the probability that S_k is odd is equal to the probability that it is even. Hence,

$$P(X_n = 1) = P(X_n = 0) = \frac{1}{2}. \quad (6)$$

(a) It is clear that when i and j are both less than n, X_i and X_j are independent. The only possible problem is when $j = n$. Taking $i = 1$ without loss of generality,

$$P(X_1 = 1, X_n = 1) = P(X_1 = 1, \sum_{i=2}^{n-1} X_i \text{ even}) \quad (7)$$

$$= P(X_1 = 1)P(\sum_{i=2}^{n-1} X_i \text{ even}) \quad (8)$$

$$= \frac{1}{2} \cdot \frac{1}{2} \quad (9)$$

$$= P(X_1 = 1)P(X_n = 1) \quad (10)$$

and similarly for other possible values of the pair X_1, X_n. Hence X_1 and X_n are independent.

(b) Since X_i and X_j are independent and uniformly distributed on \{0, 1\},

$$H(X_i, X_j) = H(X_i) + H(X_j) = 1 + 1 = 2 \text{ bits.} \quad (11)$$

(c) By the chain rule and the independence of $X_1, X_2, \ldots, X_{n-1}$, we have

$$H(X_1, X_2, \ldots, X_n) \quad = \quad H(X^{n-1}) + H(X_n|X^{n-1}) \quad (12)$$

$$= \sum_{i=1}^{n-1} H(X_i) + 0 \quad (13)$$

$$= \quad n - 1, \quad (14)$$

since X_n is a function of the previous X_i’s. The total entropy is not n, which is what would be obtained if the X_i’s were all independent. This example illustrates that pairwise independence does not imply complete independence.
3. Cesáro mean.
Prove that if \(\lim a_n = a \) and \(b_n = \sum_{i=1}^{n} a_i \), then \(\lim b_n = a \).

Solution: Cesáro mean.

Let \(\varepsilon > 0 \). Since \(a_n \rightarrow a \), there exists a number \(N(\varepsilon) \) such that \(|a_n - a| \leq \varepsilon \) for all \(n \geq N(\varepsilon) \). Furthermore,

\[
|b_n - a| = \frac{1}{n} \sum_{i=1}^{n} |a_i - a| \\
\leq \frac{1}{n} \sum_{i=1}^{n} |(a_i - a)| \\
\leq \frac{1}{n} \sum_{i=1}^{N(\varepsilon)} |(a_i - a)| + \frac{n - N(\varepsilon)}{n} \varepsilon \\
\leq \frac{1}{n} \sum_{i=1}^{N(\varepsilon)} |(a_i - a)| + \varepsilon
\]

for all \(n \geq N(\varepsilon) \). Since the first term goes to 0 as \(n \rightarrow \infty \), we can make \(|b_n - a| \leq 2\varepsilon \) by taking \(n \) large enough. Hence, \(b_n \rightarrow a \) as \(n \rightarrow \infty \).
4. **Stationary processes.**

Let \(\ldots, X_{-1}, X_0, X_1, \ldots \) be a stationary (not necessarily Markov) stochastic process. Which of the following statements are true? State true or false. Then either prove or provide a counterexample. Warning: At least one answer is false.

(a) \(H(X_n | X_0) = H(X_{-n} | X_0) \).

(b) \(H(X_n | X_0) \geq H(X_{n-1} | X_0) \).

(c) \(H(X_n | X_1^{n-1}, X_{n+1}) \) is nonincreasing in \(n \).

Solution: Stationary processes.

(a) \(H(X_n | X_0) = H(X_{-n} | X_0) \).

This statement is true, since

\[
H(X_n | X_0) = H(X_n, X_0) - H(X_0) \quad (15)
\]
\[
H(X_{-n} | X_0) = H(X_{-n}, X_0) - H(X_0) \quad (16)
\]

and \(H(X_n, X_0) = H(X_{-n}, X_0) \) by stationarity.

(b) \(H(X_n | X_0) \geq H(X_{n-1} | X_0) \).

Solution: This statement is not true in general, though it is true for first order Markov chains. A simple counterexample is a periodic process with period \(n \). Let \(X_0, X_1, X_2, \ldots, X_{n-1} \) be i.i.d. uniformly distributed binary random variables and let \(X_k = X_{k-n} \) for \(k \geq n \). In this case, \(H(X_n | X_0) = 0 \) and \(H(X_{n-1} | X_0) = 1 \), contradicting the statement \(H(X_n | X_0) \geq H(X_{n-1} | X_0) \).

(c) \(H(X_n | X_1^{n-1}, X_{n+1}) \) is non-increasing in \(n \).

This statement is true, since by stationarity \(H(X_n | X_1^{n-1}, X_{n+1}) = H(X_{n+1} | X_2^n, X_{n+2}) \geq H(X_{n+1} | X_1^n, X_{n+2}) \) where the inequality follows from the fact that conditioning reduces entropy.
5. Directed Information and causal conditioning

Directed information is denoted as $I(X^n \rightarrow Y^n)$ and is defined as

$$I(X^n \rightarrow Y^n) \triangleq \sum_{i=1}^{n} I(X^i; Y^i|Y^{i-1}).$$

Causal conditioning is denoted as $p(y^n||x^{n-d})$ and is defined as

$$p(y^n||x^{n-d}) \triangleq \prod_{i=1}^{n} p(y_i|x_{i-d}^i).$$

a. Prove that

i. $$I(X^n \rightarrow Y^n) \triangleq E \left[\log \frac{p(y^n||x^n)}{p(y^n)} \right]$$

ii. $$p(y^n, x^n) = p(y^n||x^n)p(x^n||y^{n-1}),$$

iii. $$I(X^n \rightarrow Y^n) \geq 0$$

and equals zero if and only if $p(y^n||x^n) = p(y^n)$

iv. $$I(X^n; Y^n) = I(X^n \rightarrow Y^n) + I(0Y^{n-1} \rightarrow X^n),$$

where the term $\emptyset Y^{n-1}$, denotes the concatenation of 0 (Null) to the sequence Y^{n-1}, i.e. $(\emptyset, Y_1, Y_2, \ldots Y_{n-1})$.

b. Prove that in general

$$I(X^n \rightarrow Y^n) \leq I(X^n; Y^n)$$

and equality holds if and only if $p(x^n||y^{n-1}) = p(x^n)$.

c. Suggest (without proof) properties similar to those of mutual information that should hold for directed information.
Solution: Directed Information and causal conditioning.

(a) i.

\[I(X^n \rightarrow Y^n) = H(Y^n) - H(Y^n | X^n) \]
\[= E \left[\log \frac{1}{P(y^n)} \right] - E \left[- \log P(y^n | x^n) \right] \]
\[= E \left[\log \frac{P(y^n | x^n)}{P(y^n)} \right] \]

ii.

\[p(y^n, x^n) = \prod_{i=1}^{n} p(y_i, x_i | y_{i-1}^{i-1}, x_{i-1}^{i-1}) \]
\[= \prod_{i=1}^{n} p(y_i | y_{i-1}^{i-1}, x_{i-1}^{i-1})p(y_i | y_{i-1}^{i-1}, x_i) \]
\[= p(x^n | y^{n-1})p(y^n | x^n) \]

iii. Directed information is a sum of non-negative terms, i.e. \(I(X^i; Y_i | Y^{i-1}) \geq 0 \) and therefore it is non-negative. From the definition we see that directed information equals zero if and only if \(p(y^n | x^n) = p(y^n) \) for all \((x^n, y^n)\).

iv.

\[I(X^n; Y^n) = E \left[\log \frac{p(Y^n, X^n)}{p(Y^n)p(X^n)} \right] \]
\[= E \left[\log \frac{p(Y^n | X^n)p(X^n | X^{n-1})}{p(Y^n)p(X^n)} \right] \]
\[= E \left[\log \frac{p(Y^n | X^n)}{p(Y^n)} \right] + E \left[\log \frac{p(X^n | Y^{n-1})}{p(X^n)} \right] \]
\[= I(X^n \rightarrow Y^n) + I(Y^{n-1} \rightarrow X^n) \]
(b) The inequality $I(X^n \rightarrow Y^n) \leq I(X^n; Y^n)$ follows immediately from the exercise in (a) and equality holds if and only if $p(x^n|y^{n-1}) = p(x^n)$. This condition is equivalent to the condition that feedback is not used in the encoding scheme.