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We deal with the problem of restoration of images blurred by relative motion between the camera and the
object of interest. This problem is common when the imaging system is in moving vehicles or held by human
hands, and in robot vision. For correct restoration of the degraded image, it is useful to know the point-spread
function (PSF) of the blurring system. We propose a straightforward method to restore motion-blurred im-
ages given only the blurred image itself. The method ®rst identi®es the PSF of the blur and then uses it to
restore the blurred image. The blur identi®cation here is based on the concept that image characteristics
along the direction of motion are affected mostly by the blur and are different from the characteristics in other
directions. By ®ltering the blurred image, we emphasize the PSF correlation properties at the expense of
those of the original image. Experimental results for image restoration are presented for both synthetic and
real motion blur. • 1998 Optical Society of America [S0740-3232(98)01406-9]

OCIS codes: 100.3020, 100.0100, 100.2000, 100.1830.

1. INTRODUCTION
Image restoration methods can be considered as direct
techniques when their results are produced in a simple
one-step fashion. 1 Equivalently, indirect techniques can
be considered as those in which restoration results are ob-
tained after a number of iterations. Known restoration
techniques such as inverse ®ltering and Wiener
®ltering 2,3 can be considered as simple direct restoration
techniques. The problem with such methods is that they
require a knowledge of the blur function [i.e., the point-
spread function (PSF)], which is, unfortunately, usually
not available when dealing with images blurred by mo-
tion.

The method proposed in this paper deals with applying
direct image restoration techniques even though the blur
function is unknown. Therefore it is concerned with di-
rect identi®cation of the blur function separate from and
before the restoration operation. The quality and the re-
liability of the image restoration process is usually based
on the accuracy of information concerning the degrada-
tion process.

For a given digital picture of the original scene f (i , j ), a
common practical model 2,4 of the corresponding degraded
picture g(i , j ) is

g~i , j ! 5 (
m

(
n

h~i 2 m , j 2 n ! f~m, n ! 1 n~i , j ! ,

(1)

where h (i , j ) is a linear shift-invariant PSF and n (i , j ) is
random noise.

Early approaches for identi®cation of the blur 2,4 involve
methods in which identi®cation is performed separately
from the restoration process. These approaches are usu-
ally rather simple and include fewer computational re-
quirements. A possible case for such approaches occurs
when it is known a priori that a certain portion of the de-

graded picture is the image of a point, a line, or an edge in
the original picture, but these cases are often not appli-
cable to real-life images. The early method for blur
identi®cation, 5 where no speci®c knowledge about the
original image was assumed, dealt with the case of uni-
form linear motion blur that is described by a square-
pulse PSF and used its property of periodic zeros in the
spectral domain of the blurred image. These zeros were
emphasized in the spectral domain, and the blur extent
was estimated by measuring the separations between
these zeros. The assumption of zeros in the spectral do-
main is not satis®ed in various cases of motion degrada-
tion such as accelerated motion 6,7 and low-frequency
vibrations. 8

More recent developments in blur identi®cation 9±11 re-
late the identi®cation process with the restoration pro-
cess. These methods are more complicated and require
more computations. Restoration results are criterion
based, and blur parameters can be corrected until each
criterion is satis®ed. Therefore more types of blur can be
considered. The success of these methods depends on the
reliability of the original image model. Recent important
developments are the maximum-likelihood image and
blur identi®cation methods. These methods model the
original image, the blur, and the noise process. The
original image is modeled as a two-dimensional autore-
gressive process, and the blur is modeled as a two-
dimensional linear system with ®nite impulse response.
A maximum-likelihood estimation is used for identi®ca-
tion of the image and blur parameters. The identi®ca-
tion of the blur model parameters is incorporated into the
restoration algorithm and requires many computations.
Another new blur identi®cation method 12 uses an estima-
tion of the original image power spectrum (an expected
value). The PSF estimate is chosen from a collection of
candidate PSF's to provide the best match between the
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restoration residual power spectrum and the expected re-
sidual spectrum given that the candidate PSF is the true
PSF.

In this paper we propose a new method to estimate the
blur function given only the motion-blurred image. Pre-
vious work, 13 summarized in Section 2, investigated the
motion-blurring effects on an image and established the
basic concepts with which blur characteristics such as di-
rection and extent were extracted from the blurred image.
Based on these concepts, a method to identify the blur
function is proposed here. The identi®ed function is then
used to restore the blurred image by using a Wiener ®lter.
The method addresses one-dimensional blur types, which
are common in the case of motion degradation, and we as-
sume the blur effect to be linear and space invariant and
the original image to be a stationary random process.
These assumptions are common when dealing with prac-
tical image restoration algorithms. 1,2,4

2. IDENTIFICATION OF THE MOTION
BLUR FUNCTION
The blur function needed for direct restoration of the
blurred image can be completely described by the PSF or
by the optical transfer function (OTF), which is the Fou-
rier transform of the PSF. The OTF can be formulated
as

OTF 5 MTF exp ~j PTF ! , (2)

where the modulation transfer function (MTF) is the ab-
solute value of the OTF and the phase transfer function
(PTF) is its angle.

The ®rst step of the method is to identify the blur di-
rection. Given the blur direction, correlation properties
of the blur function are then identi®ed. This is per-
formed by ®ltering the blurred image so that correlation
properties stemming from the original image are sup-
pressed, and the ®ltered version is characterized mostly
by the blur function correlation properties. This leads to
identi®cation of the blurring MTF. For causal blur the
PTF can then be extracted directly from the MTF. Using
the OTF, we then employ a simple Wiener ®lter to restore
the blurred image. The method will be presented step by
step in the following subsections. The formulation will
be presented in Section 3.

A. Motion Blur Phenomena
As a result of relative motion between the camera and the
object of interest, adjacent points in the image plane are
exposed to the same point in the object plane during the
exposure time. The intensity of an image of an original
point is shared between these image plane points accord-
ing to the relative duration in which each point is exposed
to light from the original point. The smearing tracks of
the points determine the PSF in the blurred image. Con-
trary to other blur causes such as atmospheric or out-of-
focus effects, motion blur is usually considered as one di-
mensional, since during exposure time that is relatively
short (in real-time imaging, approximately 1/30 s), motion

direction does not change. This smearing effect in the
motion direction acts as a low-pass ®lter in the spatial-
frequency domain.

B. Identi®cation of the Blur Direction
The ®rst necessary step of the method should be identi®-
cation of the motion direction relative to the image axis.
Extensive studies of image power spectra show that an
excellent simple model for imagery statistics is that of a
spatially isotropic ®rst-order Markov process. 1 Hence
the autocorrelation of the original image and its power
spectrum are assumed to be approximately isotropic. As
a consequence of motion, image resolution is decreased
mostly in the motion direction. Therefore implementa-
tion of a high-pass ®lter (such as a simple image deriva-
tive) to the blurred image in this direction should sup-
press more of the image intensity than implementing it in
other directions. Therefore motion direction is identi®ed
by measuring the direction where the power spectrum of
the image derivative is lower.

C. Decorrelating Real Images
Real images are characterized by high spatial correlation.
A simple decorrelation (whitening) ®lter can be a deriva-
tive operation. This operation in a digital image is ap-
proximately a differentiating operation whereby each
pixel in the ®ltered image is the difference between two
adjacent pixels in the original image. This operation has
been found to be an effective decorrelating ®lter.

D. Extracting Motion Blur Correlation Properties
The effect of motion blur on real images was analyzed in
detail in Ref. 13. Since the motion blur is usually one di-
mensional, its effect varies according to the direction in
the blurred image relative to the motion direction. Since
the PSF is varying in the motion direction, it is not corre-
lated perpendicularly to the motion direction. Therefore
a whitening ®lter implemented perpendicularly to the
motion direction (i.e., a ®lter that is not varying in the
motion direction) will not affect the PSF correlation prop-
erties. However, such a ®lter will signi®cantly suppress
correlation properties stemming from the original image,
which is highly correlated in all directions. On the other
hand, implementation of a whitening ®lter in the motion
direction will have a different effect. The PSF has the
same effect on all the image points. The points of the
original image will become PSF patterns that merge into
each other, forming the blurred image. A whitening de-
rivative ®lter in this direction will form patterns similar
to that of the PSF derivative. Such a ®lter implemented
in both directions will form such patterns surrounded by
extremely suppressed decorrelated regions. Therefore
these patterns can be evaluated by performing an auto-
correlation operation on the blurred image derivative.
Since these patterns are in the motion direction, the au-
tocorrelation should be performed in this direction.
Implementing the autocorrelation function (ACF) to all
the image derivative lines in the motion direction, and
then averaging them, 14 will suppress the noise stimulated
by the whitening operations. Furthermore, such averag-
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ing will cause cancellation of correlation properties left
over from the original image, which can be different from
one line to another. This is especially true since the as-
sumption of stationarity of the original image is often not
a very good one.

The ®nal conclusion here is that the average of the
ACF's of the blurred image derivative lines in the motion
direction is similar to the ACF of the PSF derivative.

E. Identi®cation of the Motion Function
The average spectral density of the image derivative lines
(in the motion direction) can be obtained by Fourier-
transforming the averaged ACF. Given the similarity
concluded in Subsection 2D, the shape of this spectral
density should be similar to that of the PSF derivative
power spectrum. Dividing it by the power spectrum of
the derivative ®lter (performed in the motion direction)

will yield the power spectrum of the PSF itself. The
whitening ®lter performed perpendicularly to the motion
direction is not considered here, since it does not affect
the PSF correlation properties as discussed in Subsection
2.D. The MTF of the blur is then the square root of its
power spectrum. If the blur is causal, the PTF can be
straightforwardly extracted from the MTF by using the
Hilbert transform as described in Section 3. The motion
function (OTF) is then obtained from Eq. (2).

The reliability of the blur function estimate depends on
the success of the original image whitening operation.
When the whitening is imperfect, the ACF of the PSF de-
rivative will be also in¯uenced by the correlation proper-
ties of the original image. In this case the image deriva-
tive will have more low-frequency content stemming from
the original image, and therefore the identi®ed ACF will
usually have higher values close to its center. The iden-

Fig. 1. Image of the Earth horizontally blurred by accelerated motion with 20-pixel blur extent and different values of R.

Fig. 2. Average of the autocorrelation functions of the blurred Earth image derivative lines in the motion direction for different values
of R.
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ti®ed MTF will then show more modulation transfer at
the lower frequencies.

3. FORMULATION OF THE METHOD
A discrete derivative of the blurred image f (i , j ), where i
and j are the horizontal and vertical directions, respec-
tively, can be approximated, for example, by 13

@Df~i , j ! #kÉ 5 f~i , j ! * d~i , j ! ,

d~i , j ! 5 F2 1 1 2 tan ~k !

0 tan ~k ! G (3)

for 0 > k > 2 45É relative to the positive horizontal direc-
tion, where * is the convolution operator.

The motion direction is identi®ed by employing a
simple high-pass ®lter such as a derivative operation [Eq.
(3)] in all the directions and measuring the total intensity
in each direction. The motion direction will then be the
direction in which the total intensity is the lowest. The
total intensity of the image derivative I (Dg) in direction k
is

@I ~Dg ! #kÉ 5 U(
1

N 2 1

(
1

M 2 1

@Dg~i , j ! #kÉU, (4)

where M and N are the number of rows and columns, re-
spectively, in the image derivative Dg(i , j ).

A digital ACF of each image derivative line in the mo-
tion direction is then performed, and the average of the
ACF's of these lines, RÅDf , is calculated.

Fig. 3. Comparison of the identi®ed and true power spectra of acceleration motion blur PSF's: (a) identi®ed power spectra obtained by
Fourier-transforming the ACF's of Fig. 2, (b) true power spectra.

Fig. 4. Blur function identi®cation: (a) original image, (b) image blurred by accelerated motion with R 5 10 and 20-pixel blur extent,
(c) true versus identi®ed MTF, (d) true versus identi®ed phase.
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An ACF R l ( j ) of an M -pixel image line l is de®ned as

R l ~j ! 5 (
i 52 M

M

l ~i 1 j ! l ~i ! , integer j P @2 M , M #,

(5)

where l (i ) 5 0 for i ¹ @0, M #. The computation of the
digital ACF's in the motion direction k (relative to the
positive horizontal direction) is performed by rotating the
image itself 2 kÉ with use of the two-dimensional interpo-
lation technique and then performing the autocorrelation

Fig. 5. (a) True versus identi®ed PSF, (b) restored image with use of the identi®ed OTF.

Fig. 6. Blur function identi®cation from a noisy blurred image: (a) original image, (b) image blurred by accelerated motion with R
5 10 and 20-pixel blur extent and an additive noise forming a 30-dB signal-to-noise ratio, (c) true versus identi®ed MTF, (d) true versus
identi®ed phase.

Fig. 7. (a) True versus identi®ed PSF, (b) restored image with use of the identi®ed OTF.
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operation [Eq. (5)] on the horizontal lines of the rotated
image. The commonly used bilinear interpolation
technique 15 was employed to estimate the rotated image.
In this technique the interpolated pixel is a combination
of the values of the four closest pixels according to the ro-
tation transform.

Since the average ACF of the image derivative lines,
RÅDf , resembles the ACF of the PSF derivative, its dis-
crete Fourier transform SÅDf will resemble the power spec-
trum of the PSF derivative SdPSF :

SÅDf ~u ! ' SdPSF~u ! , (6)

where

SdPSF~u ! 5 uOTF~u !D~u !u2, (7)

where D is the Fourier transform of the derivative ap-
proximation. The MTF of the degradation process is the
absolute value of the OTF and can be approximated from
Eq. (7) and the following:

MTF ~u ! ' ASÅDf ~u ! /uD~u !u. (8)

For various PSF types usually referred to as minimum
phase functions, the magnitude and the phase of the OTF
are related by the Hilbert transform. 16±18 Under the con-
ditions that the PSF of the blur is real, causal, and stable,

the log MTF and the PTF will be Hilbert transforms of
each other. The PTF will then be extracted from the
MTF by

PTF~u ! 5 2
1

2p E
0

2p

ln @MTF ~a ! #cotSu 2 a
2 Dda . (9)

The OTF used to restore the blurred image is then ob-
tained from Eq. (2).

The minimum-phase conditions are usable in many
situations. 16 General usage concerns digital ®lters that
are often speci®ed in terms of the magnitude of the fre-
quency response. In such cases the phase response can-
not be chosen arbitrarily if a stable and causal system is
desired.

4. ANALYSIS FOR ACCELERATED MOTION
Accelerated motion is an example that represents a vari-
ety of motion PSF types, depending on the acceleration
and the initial velocity. The line spread function (LSF) of
accelerated motion is 6

LSF~x ! 5
1

t e~n0
2 1 2ax ! 1/2

, (10)

where a is the acceleration, n0 is the initial velocity, and
t e is the exposure time. The accelerated motion param-
eter

R 5 n0
2/a (11)

describes the smoothness of the motion during the expo-
sure. R is proportional to the relative homogeneity of the
PSF as de®ned and discussed in Ref. 13. In Fig. 1 the
image of the Earth was blurred by accelerated motion
with different values of R. We can see that for the same
blur extent, as R increases, the blur effect is severer.
When R is in®nity, the motion is of a uniform velocity
type and the blurring effect is maximal. Figure 2 shows
the average of the ACF's of the image derivative lines in
the motion direction for different values of R varying from
in®nity to 0.11. The extent of the blur can be identi®edFig. 8. Picture taken from a moving car.

Fig. 9. (a) Identi®ed MTF of the motion blur, (b) identi®ed PTF of the motion blur.
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according to the distance between the global minimum of
the function and its center @RÅDf (0)#. The capability of
the blur extent identi®cation was analyzed quantitatively
in Ref. 13.

Figure 3 shows a comparison of the estimated and true
power spectra. The estimated power spectra are the
Fourier transforms of the ACF's of the blurred Earth im-
age derivative appearing in Fig. 2. We can see that even
for R 5 0.11, where the blur extent was not identi®ed,
the estimated power spectrum resembles the true one.

5. RESULTS OF BLUR IDENTIFICATION
AND IMAGE RESTORATION
Results of implementation of the method are presented
here for both synthetic and true motion blurs. The appli-
cation of synthetic blur is presented in Subsection 5.A. It
enables us to compare the true degrading function with
the identi®ed one, and it also show the effects of image
restoration. A real-life motion blur example is presented
in Subsection 5.B.

A. Results for Synthetic Blurring
The blurred image of Fig. 4(b) is obtained by blurring the
original image of Fig. 4(a) with the use of a uniform mo-
tion function of 20-pixel blur extent. The MTF shown in
Fig. 4(c) was identi®ed by the algorithm formulated in
Section 3. The identi®ed PTF shown in Fig. 4(d) was
then calculated by using Eq. (9).

Good similarities between the true and the identi®ed
MTF's and PTF's determining the blur are presented in
Figs. 4(c) and 4(d), respectively. The identi®ed PSF pre-
sented in Fig. 5(a) was obtained by Fourier-transforming
the OTF constructed from the identi®ed MTF and PTF ac-

cording to Eq. (2). The restored image with use of the
identi®ed blur function with a Wiener ®lter 2,3 is pre-
sented in Fig. 5(b). Figure 6 concerns a noisy blurred im-
age. The original image here was blurred according to
Eq. (2) by a uniform motion function of 20-pixel blur ex-
tent and additive noise forming a 30-dB signal to-noise
ratio. The similarities between the true and the identi-
®ed MTF's and PTF's are presented in Figs. 6(c) and 6(d),
respectively. We can see that here the capability of the
phase identi®cation decreases at higher spatial frequen-
cies as a result of the noise. A comparison of the true and
the identi®ed PSF's is presented in Fig. 7(a). The re-
stored image is shown in Fig. 7(b).

B. Results for Real-Life Motion Blur
Figure 8 shows an image of a commercial sign taken from
a moving car. The identi®ed MTF presented in Fig. 9(a)
was estimated by using the algorithm formulated in Sec-
tion 3. The PTF of the blur presented in Fig. 9(b) was
calculated from the estimated MTF by using Eq. (9). The
restored image with use of the identi®ed OTF with a
Wiener ®lter is presented in Fig. 10. We can clearly read
the phone number, which is extremely blurred and cannot

Fig. 10. Restored image with use of the identi®ed OTF.

Fig. 11. Picture taken from a moving car.

Fig. 12. (a) Identi®ed MTF, (b) identi®ed PTF.
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be read in the recorded image. Another number (that we
could not know exists) can be read in the restored image
at the bottom. The image of Fig. 11 was also taken from
a moving car. The MTF and the PTF identi®ed by the
proposed algorithm are presented in Figs. 12(a) and 12(b),
respectively. The restored image is presented in Fig. 13.
Here we can also read the Hebrew words (``blossoming
rustic neighborhood''), which cannot be read in the re-
corded image.

6. SUMMARY AND CONCLUSIONS
A direct method for motion-blurred image restoration is
presented. The method ®rst identi®es the function of the
blur and then uses it to restore the blurred image with a
standard restoration ®lter. The blur identi®cation is per-
formed by ®ltering the blurred image so that the correla-
tion properties of the ®ltered image are characterized
mostly by the blur function. Examples such as acceler-
ated motion and imaging from a moving car are pre-
sented. Good blur identi®cation and image restoration
are achieved. Considering that no knowledge is assumed
here about the original image and about the motion type
(except that it is one dimensional), this method can be
compared with Cannon's direct method. 5 Contrary to
Cannon's approach, the method here does not assume
uniform (or almost-uniform) motion. Furthermore, a
complete estimation of the blur function is extracted here
from the blurred image, where in Cannon's method only
the blur extent and direction are estimated from the
blurred image.
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