Agilent

Agilent 34405A Multimeter
5.5 Digit Dual Display, Benchtop DMM
More Capabilities at a Value Price

Data Sheet
Features

120000 counts resolution
16 built-in measurement functions including temperature and capacitance
0.025% 1-year DC voltage accuracy
USB 2.0
SCPI compatible
Agilent IO Library Suite and DMM Intuilink connectivity software included

Affordable and Feature Rich Measurement Tool

The 34405A represents the latest member in the Agilent’s DMM family and this expands Agilent’s offerings in the electronics measurement tools. It provides a broad range of features and measurement functions such as DC voltage, DC current, true-RMS AC voltage and AC current, 2-wire resistance, frequency, diode test and continuity which are designed to meet general industrial needs. Furthermore, it can measure temperature ranging from -80oC to 150oC. The true value is more evident with its capability to measure capacitance ranging from 1000pF to 10000mF. Agilent 34405A also improves efficiency and accuracy with its 6 built-in math operations: Null, dBm, dB, MinMax, Limit and Hold.

Bright Display, Fast Reading Speed and Configuration Storage

When high throughput and productivity are the priority, Agilent 34405A VFD dual display feature allows users to take more than one measurement and display them simultaneously on the front panel. For speed critical applications, Agilent 34405A can take up to 19 readings/sec at 4.5 digits resolution directly to the PC. In addition, the user can configure and store complete instrument setups and recall them at anytime from any of the four built-in storing states.

Quick Connection to the PC with USB 2.0 Interface

For those with a need to control and take preset measurements with a PC, the built-in USB 2.0 interface provides an easy and robust connection between the PC and DMM. The USB interface connects directly to the PC host and works seamlessly with Agilent Connectivity software and can be controlled remotely via industry standard SCPI commands or through DMM Intuilink Connectivity software. IVI-COM and LabVIEW drivers are included to ensure an easy integration with different programming environments.

Rugged and Reliable

The 34405A is designed and tested according to major Safety and Regulatory Standards. In addition, the shock absorbing bumpers is designed to prevent physical damage from your day-to-day use.

You can watch 344051 in action on your PC by downloading the interactive demo from the 34405A homepage at www.agilent.com/find/34405a

Go to the WEB for more information on Agilent’s DMM. Visit www.agilent.com
DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Function</th>
<th>Range (V)</th>
<th>Test Current or Burden Voltage</th>
<th>Input Impedance (Ω)</th>
<th>1 Year 23 °C ± 5 °C</th>
<th>Temperature Coefficient 0 °C - 18 °C</th>
<th>Temperature Coefficient 28 °C - 55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTAGE</td>
<td>100.000 mV</td>
<td>-</td>
<td>10.0 MΩ ±2%</td>
<td>0.025 ± 0.008</td>
<td>0.0015 ± 0.0005</td>
<td>0.0014 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>1.0000 V</td>
<td>-</td>
<td>10.0 MΩ ±2%</td>
<td>0.025 ± 0.006</td>
<td>0.0010 ± 0.0005</td>
<td>0.0010 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>10.000 V</td>
<td>-</td>
<td>10.1 MΩ ±2%</td>
<td>0.025 ± 0.005</td>
<td>0.0020 ± 0.0005</td>
<td>0.0020 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>100.000 V</td>
<td>-</td>
<td>10.1 MΩ ±2%</td>
<td>0.025 ± 0.005</td>
<td>0.0020 ± 0.0005</td>
<td>0.0020 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>1000.00 V</td>
<td>-</td>
<td>10.0 MΩ ±2%</td>
<td>0.025 ± 0.005</td>
<td>0.0015 ± 0.0005</td>
<td>0.0015 ± 0.0005</td>
</tr>
</tbody>
</table>

RESISTANCE

<table>
<thead>
<tr>
<th>Function</th>
<th>Range (Ω)</th>
<th>Test Current or Burden Voltage</th>
<th>Input Impedance (Ω)</th>
<th>1 Year 23 °C ± 5 °C</th>
<th>Temperature Coefficient 0 °C - 18 °C</th>
<th>Temperature Coefficient 28 °C - 55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100.000 Ω</td>
<td>1.0 mA</td>
<td>-</td>
<td>0.05 ± 0.008</td>
<td>0.0060 ± 0.0008</td>
<td>0.0060 ± 0.0008</td>
</tr>
<tr>
<td></td>
<td>1.0000 kΩ</td>
<td>0.83 mA</td>
<td>-</td>
<td>0.05 ± 0.005</td>
<td>0.0060 ± 0.0005</td>
<td>0.0060 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>10.000 kΩ</td>
<td>100 μA</td>
<td>-</td>
<td>0.05 ± 0.006</td>
<td>0.0060 ± 0.0005</td>
<td>0.0060 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>100.000 kΩ</td>
<td>10.0 μA</td>
<td>-</td>
<td>0.05 ± 0.007</td>
<td>0.0060 ± 0.0005</td>
<td>0.0060 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>1.0000 MΩ</td>
<td>900 nA</td>
<td>-</td>
<td>0.06 ± 0.007</td>
<td>0.0060 ± 0.0005</td>
<td>0.0060 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>10.000 MΩ</td>
<td>205 nA</td>
<td>-</td>
<td>0.25 ± 0.005</td>
<td>0.0250 ± 0.0005</td>
<td>0.0250 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>100.000 MΩ</td>
<td>205 nA</td>
<td>10MΩ</td>
<td>-</td>
<td>2.00 ± 0.005</td>
<td>0.3000 ± 0.0005</td>
</tr>
</tbody>
</table>

CURRENT

<table>
<thead>
<tr>
<th>Function</th>
<th>Range (mA)</th>
<th>Test Current or Burden Voltage</th>
<th>Input Impedance (Ω)</th>
<th>1 Year 23 °C ± 5 °C</th>
<th>Temperature Coefficient 0 °C - 18 °C</th>
<th>Temperature Coefficient 28 °C - 55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.000 mA</td>
<td>< 0.2 V</td>
<td>-</td>
<td>0.05 ± 0.015</td>
<td>0.0055 ± 0.0005</td>
<td>0.0055 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>100.000 mA</td>
<td>< 0.2 V</td>
<td>-</td>
<td>0.05 ± 0.005</td>
<td>0.0055 ± 0.0005</td>
<td>0.0055 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>1.0000 A</td>
<td>< 0.5 V</td>
<td>-</td>
<td>0.20 ± 0.007</td>
<td>0.0100 ± 0.0005</td>
<td>0.0100 ± 0.0005</td>
</tr>
<tr>
<td></td>
<td>10.000 A</td>
<td>< 0.6 V</td>
<td>-</td>
<td>0.25 ± 0.007</td>
<td>0.0150 ± 0.0005</td>
<td>0.0150 ± 0.0005</td>
</tr>
</tbody>
</table>

DIODE TEST

<table>
<thead>
<tr>
<th>Function</th>
<th>Range (V)</th>
<th>Test Current or Burden Voltage</th>
<th>Input Impedance (Ω)</th>
<th>1 Year 23 °C ± 5 °C</th>
<th>Temperature Coefficient 0 °C - 18 °C</th>
<th>Temperature Coefficient 28 °C - 55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0000 V</td>
<td>0.83 mA</td>
<td>-</td>
<td>0.05 ± 0.005</td>
<td>0.0050 ± 0.0005</td>
<td>0.0050 ± 0.0005</td>
</tr>
</tbody>
</table>

AC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Function</th>
<th>Range (V)</th>
<th>Frequency</th>
<th>1 Year 23 °C ± 5 °C</th>
<th>Temperature Coefficient 0 °C - 18 °C</th>
<th>Temperature Coefficient 28 °C - 55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE-RMS AC VOLTAGE</td>
<td>100.000 mV</td>
<td>20 Hz - 45 Hz</td>
<td>1.0 ± 0.1</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>45 Hz - 1 kHz</td>
<td>0.2 ± 0.1</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>10 kHz - 30 kHz</td>
<td>1.5 ± 0.3</td>
<td>0.05 ± 0.02</td>
<td>0.05 ± 0.02</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>30 kHz - 100 kHz</td>
<td>5.0 ± 0.3</td>
<td>0.10 ± 0.02</td>
<td>0.10 ± 0.02</td>
<td>0.10 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>1.0000 V to 750.00 V</td>
<td>20 Hz - 45 Hz</td>
<td>1.0 ± 0.1[^14]</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>45 Hz - 1 kHz</td>
<td>0.2 ± 0.1</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>10 kHz - 30 kHz</td>
<td>1.0 ± 0.1</td>
<td>0.05 ± 0.02</td>
<td>0.05 ± 0.02</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>30 kHz - 100 kHz</td>
<td>3.0 ± 0.2[^15]</td>
<td>0.10 ± 0.02</td>
<td>0.10 ± 0.02</td>
<td>0.10 ± 0.02</td>
</tr>
<tr>
<td>TRUE-RMS AC CURRENT</td>
<td>10.000 mA to 10.000 A</td>
<td>20 Hz - 45 Hz</td>
<td>1.5 ± 0.1</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>45 Hz - 1 kHz</td>
<td>0.5 ± 0.1</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>1 kHz - 10 kHz</td>
<td>2.0 ± 0.2</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
</tr>
</tbody>
</table>
AC CHARACTERISTICS\(^1\)

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>RANGE(^9)</th>
<th>FREQUENCY</th>
<th>ACCURACY ± (% of reading + % of range)</th>
<th>Temperature Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Year</td>
<td>23 °C ± 5 °C</td>
</tr>
<tr>
<td>FREQUENCY(^8)</td>
<td>100.000 mV to 750.00 V</td>
<td>< 2 Hz</td>
<td>0.18+0.003</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 20 Hz</td>
<td>0.04+0.003</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 Hz - 100 kHz(^{11})</td>
<td>0.02+0.003</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 kHz ~ 300 kHz(^{12})</td>
<td>0.02+0.003</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>10.0000 mA to 10.0000 A</td>
<td>< 2 Hz</td>
<td>0.18+0.003</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 20 Hz</td>
<td>0.04+0.003</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 Hz ~ 10 kHz(^{11})</td>
<td>0.02+0.003</td>
<td>0.005</td>
</tr>
</tbody>
</table>

TEMPERATURE and CAPACITANCE CHARACTERISTICS\(^1\)

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>RANGE</th>
<th>TEST CURRENT, etc.</th>
<th>ACCURACY ± (% of reading + % of range)</th>
<th>Temperature Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 Year</td>
<td>23 °C ± 5 °C</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>-80 °C - 150 °C</td>
<td>5 kΩ thermistor probe</td>
<td>Probe accuracy + 0.2 °C</td>
<td>0.002 °C</td>
</tr>
<tr>
<td></td>
<td>- 110.0 °F - 300.0 °F</td>
<td>5 kΩ thermistor probe</td>
<td>Probe accuracy + 0.4 °F</td>
<td>0.0036 °F</td>
</tr>
<tr>
<td>CAPACITANCE</td>
<td>1.000 nF</td>
<td>0.75 μA</td>
<td>2.0+0.8</td>
<td>0.02+0.001</td>
</tr>
<tr>
<td></td>
<td>10.00 nF</td>
<td>0.75 μA</td>
<td>1.0+0.5</td>
<td>0.02+0.001</td>
</tr>
<tr>
<td></td>
<td>100.0 nF</td>
<td>8.3 μA</td>
<td>1.0+0.5</td>
<td>0.02+0.001</td>
</tr>
<tr>
<td></td>
<td>1.000 μF - 100.0 μF</td>
<td>83 μA</td>
<td>1.0+0.5</td>
<td>0.02+0.001</td>
</tr>
<tr>
<td></td>
<td>1000 μF</td>
<td>0.83 mA</td>
<td>1.0+0.5</td>
<td>0.02+0.001</td>
</tr>
<tr>
<td></td>
<td>10.000 μF</td>
<td>0.83 mA</td>
<td>2.0+0.5</td>
<td>0.02+0.001</td>
</tr>
</tbody>
</table>

\(^1\) Specifications are for 30 minutes warm-up, 5 1/2 digit resolution and calibration temperature 18 °C - 28 °C.

\(^2\) 20% over range on all ranges except 1000 Vdc.

\(^3\) Specifications are 2-wire ohms using Math Null. If without Math Null, add 0.2 Ω additional error.

\(^4\) Specifications are for the voltage measured at the input terminals only.

\(^5\) 20% over range on all range except 750 Vac.

\(^6\) Specifications are for sinewave inputs >5% of range. Maximum crest factor : 3 at full scale.

\(^7\) Additional error to be added as frequency >30 kHz and signal input <10% of range. 30 kHz ~ 100 kHz: 0.003% of full scale per kHz.

\(^8\) For 12 A terminal, 10 A dc or ac rms continuous, >10 A dc or ac rms for 30 seconds ON and 30 seconds OFF.

\(^9\) For 1 A and 10 A ranges, the frequency is verified for less than 5 kHz.

\(^10\) Specifications are for half-hour warm-up, using 0.1 second aperture. The frequency can be measured up 1Mhz as 0.5V signal to 100 mV/1 V ranges.

\(^11\) For 20 Hz ~ 10 kHz, the sensitivity is AC input current from 10% to 120% of range except where noted.

\(^12\) For 100 kHz ~ 300 kHz, the sensitivity will be 12% ~ 120% of range except 750 V range.

\(^13\) Input Impedance is in paralleled with capacitance <120 pF.

\(^14\) For input <200 V rms

\(^15\) For input <300 V rms
OPERATING CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DCV</td>
<td>5.5</td>
<td>15 /s</td>
<td>0.3</td>
<td>0.3</td>
<td>< 1.2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>70 /s</td>
<td>0.2</td>
<td>0.2</td>
<td>< 1.1</td>
<td>19</td>
</tr>
<tr>
<td>DCI</td>
<td>5.5</td>
<td>15 /s</td>
<td>0.4</td>
<td>0.4</td>
<td>< 1.0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>70 /s</td>
<td>0.3</td>
<td>0.3</td>
<td>< 0.5</td>
<td>19</td>
</tr>
<tr>
<td>ACV</td>
<td>5.5</td>
<td>2.5 /s</td>
<td>1.3</td>
<td>1.7</td>
<td>< 5.7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>2.5 /s</td>
<td>1.2</td>
<td>1.5</td>
<td>< 5.1</td>
<td>2</td>
</tr>
<tr>
<td>ACI</td>
<td>5.5</td>
<td>2.5 /s</td>
<td>1.8</td>
<td>2.2</td>
<td>< 4.7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>2.5 /s</td>
<td>1.5</td>
<td>1.9</td>
<td>< 4.0</td>
<td>2</td>
</tr>
<tr>
<td>FREQ<sup>[6]</sup></td>
<td>5.5</td>
<td>9 /s</td>
<td>2.8</td>
<td>2.8</td>
<td>< 5.8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>9 /s</td>
<td>2.5</td>
<td>2.5</td>
<td>< 5.0</td>
<td>1</td>
</tr>
</tbody>
</table>

^[1] Reading rate of the A/D converter.

^[2] Time to change from 2-wire resistance to this specified function and to take at least one reading using SCPI “FUNC” and “READ?” commands.

^[3] Time to change from one range to the next higher range and to take at least one reading using SCPI “FUNC” and “READ?” commands.

^[4] Time to automatically change one range and to take at least one reading using SCPI “CONF AUTO” and “READ?” commands.

^[5] Number of measurements per second that can be read through USB using SCPI “READ?” command.

^[6] Reading rate depends on signal frequency >10 Hz.

DIMENSIONS

![Device Dimensions Diagram](image-url)

- **Width:** 261.1 mm
- **Height:** 103.8 mm
- **Depth:** 303.2 mm
SUPPLEMENTAL MEASUREMENT CHARACTERISTICS

DC VOLTAGE
- **Measuring Method:** Sigma Delta A-to-D converter
- **Input Resistance:** 10 MΩ ± 2% range (typical)
- **Input Protection:** 1000V on all ranges

RESISTANCE
- **Measuring Method:** 2-wire Ohms
- **Open-circuit voltage:** Limited to < 5V
- **Input Protection:** 1000 V on all ranges

DC CURRENT
- **Shunt Resistance:**
 - 0.1 Ω to 10 Ω for 10mA to 1.2 A ranges
 - 0.01 Ω for 12 A range
- **Input Protection:**
 - Front Panel 1.25 A, 500 V fuse for I terminal
 - Internal 15 A, 600 V fuse for 12 A terminal

CONTINUITY/DIODE TEST
- **Measuring Method:**
 - Uses 0.83 mA ± 0.2% constant current source, < 5 V open circuit voltage
- **Response Time:** 70 samples/second with audible tone
- **Continuity Threshold:** 10 Ω fixed
- **Input Protection:** 1000 V

TEMPERATURE
- **Measurement Method:**
 - 2-wire Ohms measurement of 5 kΩ thermistor sensor (E2308A) with computer conversion
 - Auto-ranging measurement, no manual range selection
- **Input Protection:** 1000 V

MEASUREMENT NOISE REJECTION
- **CMRR (Common Mode Rejection) for 1 kΩ unbalance LO lead:**
 - DC: 120 dB
 - AC: 70 dB
- **NMR (Normal Mode Rejection) For 60 Hz (50Hz) ± 0.1%:**
 - 5 1/2 digit: 65 dB (55 dB)
 - 4 1/2 digit: 0 dB

AC VOLTAGE
- **Measuring Method:** AC coupled true-RMS - measure the ac component with up to 400 Vdc bias any range
- **Crest Factor:** Maximum 5:1 at full scale
- **Input Impedence:**
 - 1 MΩ±2% in parallel with < 100 pF of all ranges
- **Input Protection:** 750 Vrms on all ranges

AC CURRENT
- **Measuring Method:**
 - DC coupled to the fuse and current shunt, AC coupled true-RMS measurement (measure the AC component only)
 - Shunt Resistance:
 - 0.1 Ω to 10 Ω for 10 mA to 1.2 A range
 - 0.1 Ω for 12 A range
- **Input Protection:**
 - Externally accessible 1.25 A, 500 V fuse for I terminal
 - Internally replaceable 15 A, 600 V fuse for 12 A terminal

FREQUENCY
- **Measurement Method:** Reciprocal counting technique. AC coupled input using AC voltage function.
- **Signal Level:**
 - 10% of range to full scale input on all ranges
 - Auto or manual range selection
- **Gate Time:**
 - 0.1 second or 1 period of the input signal, whichever is longer.
- **Input Protection:** 750 Vrms on all ranges

MATH FUNCTIONS
- Null, dBm, dB, Min/Max/Avg, Hold, Limit Test

TRIGGER and MEMORY
- Single trigger, 1 reading memory

REMOTE INTERFACE
- USB 2.0 full speed, USBTMC-USB488 device class

PROGRAMMING LANGUAGE
- SCPI, IEEE-488.1, IEEE-488.2
GENERAL CHARACTERISTICS

POWER SUPPLY
100V/120V(127V)/220V(230V)/240V ± 10%
AC line frequency 45Hz - 66Hz and (360Hz - 440Hz, 100/120V operation)

POWER CONSUMPTION
16VA maximum, <11W average

OPERATING ENVIRONMENT
- Full accuracy at 0 °C to 55 °C
- Full accuracy to 80% RH at 30 °C (non-condensing)
- Altitude up to 3000 meters

STORAGE COMPLIANCE
- -40 °C to 70 °C

SAFETY COMPLIANCE
- Certified to CSA for IEC/EN/CSA/UL 61010-1 2nd Edition

MEASUREMENT CATEGORY
- CAT II, 300V: CAT I 1000Vdc, 750Vac rms, 2500Vpk
- Transient over voltage
- Pollution degree 2

EMC COMPLIANCE
- Certified to IEC/EN 61326:2002, CISPR 11, and equivalents for Group 1, Class A

SHOCK and VIBRATION
- Tested to IEC/EN 60086-2

DIMENSION (HxWxD)
- Rack: 88.5mm x 212.6mm x 272.3mm
- Bench: 103.8mm x 261.2mm x 303.2mm

WEIGHT
- 3.75 kg, 8.27 lb

WARM UP TIME
- 30 minutes

WARRANTY
- 1 year

Accessories included:

- Test lead kit
- Test report
- Power cord
- USB interface cable
- Quick Start Guide
- User’s and Service Guide
- Product Reference CD-ROM
- Agilent IO Library Suite CD-ROM

Options:

- Opt. 1CM - Rack mount adapter kit

Agilent Optional Accessories

- **34132A Deluxe Test Lead Kits**
- **34133A Precision Electronics Test Leads**
- **34330A 30A Current Shunt**
- **E2308A Thermistor Probe**
Agilent 34405A Multimeter: Versatile and low cost solution for benchtop testing.

5.5 digit dual display increases productivity and throughput in troubleshooting.

Use the Up-Down keys to select the desired measurement range. Just press Shift -> Auto key to switch measurement range automatically.

Superior value with a broad range of functions, which includes the temperature and capacitance measurements.

Connect the supplied test leads to the Input Terminals to start your measurements.

Selecting the secondary display measurements.

Math functions and utility menu that allow users to take reference measurements (ie. Min/Max value and etc.) and store the measurement setups from the front panel.
Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to

www.agilent.com/find/removealldoubt

Product specifications and descriptions in this document subject to change without notice.

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Phone or Fax

America

Canada (877) 894-4414
Latin America 365 269 7500
United States (800) 829-4444

Asia Pacific

Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 000

Europe & Middle East

Austria 01 36027 71571
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
* 0.125€/minute
Germany 07031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201

Other European Countries:
www.agilent.com/find/contactus

© Agilent Technologies, Inc. 2009
Printed in USA, March 26, 2009
5989-4906EN