Continuous-Time Directed Information

Tsachy Weissman
Stanford

Young-Han Kim
UCSD

Haim Permuter
Ben-Gurion University

ITW
Oct 2011, Paraty
Outline

1. Definition and properties of discrete-time directed information
2. Review of results involving directed information in feedback capacity, gambling, lossless compression, feedforward rate distortion, multi-user information theory, causality measure
3. Definition and properties of continuous-time directed information
4. Continuous-time directed information in estimation, continuous time communication
Definitions (Discrete Time)

\[I(X^n; Y^n) \triangleq H(Y^n) - H(Y^n|X^n) = \sum_{i=1}^{n} I(X^n; Y_i|Y^{i-1}) \]

\[H(Y^n|X^n) \triangleq E[-\log P(Y^n|X^n)] \]

\[P(y^n|x^n) = \prod_{i=1}^{n} P(y_i|x^n, y^{i-1}) \]

Definitions (Discrete Time)

Directed Information

\[
I(X^n \rightarrow Y^n) \triangleq H(Y^n) - H(Y^n|X^n) \triangleq \sum_{i=1}^{n} I(X^i; Y_i|Y^{i-1})
\]

\[
I(X^n; Y^n) \triangleq H(Y^n) - H(Y^n|X^n) = \sum_{i=1}^{n} I(X^n; Y_i|Y^{i-1})
\]

Causal Conditioning

\[
H(Y^n||X^n) \triangleq E[-\log P(Y^n||X^n)]
\]

\[
H(Y^n|X^n) \triangleq E[-\log P(Y^n|X^n)]
\]

\[
P(y^n|x^n) \triangleq \prod_{i=1}^{n} P(y_i|x^i, y^{i-1})
\]

\[
P(y^n|x^n) = \prod_{i=1}^{n} P(y_i|x^n, y^{i-1})
\]
Directed information characterizes the channel capacity.

\[
C = \lim_{n \to \infty} \max_{Q(x^n \mid z^{n-1})} \frac{1}{n} I(X^n \to Y^n)
\]

[Massey90, Kramer98, Tatikonda/Mitter10, Kim10, P/Goldsmith/Weissman10]
Key Property: Chain rule

causal conditioning

\[P(y^n \| x^n) \triangleq \prod_{i=1}^{n} P(y_i \| x_i, y_{i-1}), \]

\[Q(x^n \| y^{n-1}) \triangleq \prod_{i=1}^{n} Q(x_i \| x_{i-1}, y_{i-1}) \]

chain rule

\[P(x^n, y^n) = Q(x^n \| y^{n-1}) P(y^n \| x^{n-1}) \]
Conservation Law

\[
I(X^n; Y^n) = I(X^n \rightarrow Y^n) + I(Y^{n-1} \rightarrow X^n) \quad [\text{Massey06}]
\]

Recall

\[
P(x^n, y^n) = P(x^n \mid| y^{n-1})P(y^n \mid| x^n)
\]

\[
I(X^n; Y^n) = \mathbb{E} \left[\ln \frac{P(Y^n, X^n)}{P(Y^n)P(X^n)} \right]
\]

\[
= \mathbb{E} \left[\ln \frac{P(Y^n \mid| X^n)P(X^n \mid| Y^{n-1})}{P(Y^n)P(X^n)} \right]
\]

\[
= \mathbb{E} \left[\ln \frac{P(Y^n \mid| X^n)}{P(Y^n)} \right] + \mathbb{E} \left[\ln \frac{P(X^n \mid| Y^{n-1})}{P(X^n)} \right]
\]

\[
= I(X^n \rightarrow Y^n) + I(Y^{n-1} \rightarrow X^n).
\]
Conservation Law

\[I(X^n; Y^n) = I(X^n \rightarrow Y^n) + I(Y^{n-1} \rightarrow X^n) \] [Massey06]

Recall \(P(x^n, y^n) = P(x^n||y^{n-1})P(y^n||x^n) \)

\[
I(X^n; Y^n) = \mathbb{E} \left[\ln \frac{P(Y^n, X^n)}{P(Y^n)P(X^n)} \right] \\
= \mathbb{E} \left[\ln \frac{P(Y^n||X^n)P(X^n||Y^{n-1})}{P(Y^n)P(X^n)} \right] \\
= \mathbb{E} \left[\ln \frac{P(Y^n||X^n)}{P(Y^n)} \right] + \mathbb{E} \left[\ln \frac{P(X^n||Y^{n-1})}{P(X^n)} \right] \\
= I(X^n \rightarrow Y^n) + I(Y^{n-1} \rightarrow X^n).
\]

In case that we have deterministic feedback \(z_i(y_i) \):

\[
I(X^n; Y^n) = I(X^n \rightarrow Y^n) + I(Z^{n-1} \rightarrow X^n).
\]
\[I(X^n; Y^n) = I(X^n \rightarrow Y^n) + I(Y^{n-1} \rightarrow X^n) \] [Massey06]

Recall \[P(x^n, y^n) = P(x^n \| y^{n-1})P(y^n \| x^n) \]

\[
I(X^n; Y^n) = \mathbb{E} \left[\ln \frac{P(Y^n, X^n)}{P(Y^n)P(X^n)} \right] \\
= \mathbb{E} \left[\ln \frac{P(Y^n \| X^n)P(X^n \| Y^{n-1})}{P(Y^n)P(X^n)} \right] \\
= \mathbb{E} \left[\ln \frac{P(Y^n \| X^n)}{P(Y^n)} \right] + \mathbb{E} \left[\ln \frac{P(X^n \| Y^{n-1})}{P(X^n)} \right] \\
= I(X^n \rightarrow Y^n) + I(Y^{n-1} \rightarrow X^n).
\]

In case that we have deterministic feedback \(z_i(y_i) \):

\[I(X^n; Y^n) = I(X^n \rightarrow Y^n) + I(Z^{n-1} \rightarrow X^n). \]

If there is no feedback, \(z_i = \text{null} \), then

\[I(X^n; Y^n) = I(X^n \rightarrow Y^n) + 0. \]
Directed Information as a functional of causal conditioning

\[I(Q(x^n||y^{n-1}), P(y^n||x^n)) = \sum_{x^n,y^n} Q(x^n||y^{n-1}) P(y^n||x^n) \ln \frac{P(y^n||x^n)}{\sum_{x^n} Q(x^n||y^{n-1}) P(y^n||x^n)} \]

\[= H(Y^n) - H(Y^n||X^n) \]

\[= I(X^n \to Y^n) \]

- Causal-conditioning \(Q(x^n||y^{n-1}) \) and \(P(y^n||x^n) \) are convex sets.
- Directed information is concave in \(Q(x^n||y^{n-1}) \) and convex in \(P(y^n||x^n) \)
- Blaut-Arimoto or Geometric programming can be used for computing \(\max_{Q(x^n||y^{n-1})} I(X^n \to Y^n) \) [Naiss/P11]
Example: Blackwell’s Channel/Trapdoor Channel/Chemocal Channel

Introduced by David Blackwell in 1961. [Ash65], [Ahlswede & Kaspi 87], [Ahlswede 98], [Kobayashi 02] [Berger91].

\[C_{fb} = \log \frac{\sqrt{1+5}}{2}, \text{ simple scheme } [P/Cuff/Weissman/Van-Roy09]. \]
Example: Issing Channel

- Introduced by Berger in 1990 and it models inter-symbol interference.
- The channel behaves as a Z-channel or S-channel, depending on the previous input.

\[x_{n-1} = 0 \]
\[x_{n-1} = 1 \]

\[C = \max_{0 \leq x \leq 1} \frac{2H_b(x)}{3+x}, \text{ simple scheme [P/Elischo11].} \]
Portfolio Theory and Gambling

Consider a horse-race market

- X_i - the horse that wins at time i.
- Y_i - side information available at time i.

(X_i, Y_i), i.i.d

The optimal strategy is to invest the capital proportional to $P(x|y)$. The increase in the growth rate due to side information Y is

$$\Delta W = nI(X; Y).$$

(X_i, Y_i) general processes

The optimal strategy is to invest the capital proportional to $P(x_i|x^{i-1}, y^i)$. The increase in the growth rate due to causal side information is

$$\Delta W = I(Y^n \rightarrow X^n).$$
Lossless compression

- X_i - stationary source.
- Y_i - side information available at the encoder and *causally* at the decoder.

lossless compression with causal side information
[Osvaldo/P 11]

The minimum rate needed to reconstruct the process \(\{X_i\} \)

\[
R = \lim_{n \to \infty} \frac{1}{n} H(X^n || Y^n)
\]

The reduction in the compression rate due to *causal* side information is

\[
\Delta R = \lim_{n \to \infty} \frac{1}{n} (H(X^n) - H(X^n || Y^n)) = \lim_{n \to \infty} \frac{1}{n} I(Y^n \rightarrow X^n)
\]
More results involving directed information

- Memoryless networks with feedback [Gerhard98]
- Rate distortion with feedforward [Weissman/Merhav03][Venkataramanan/Pradhan07][Naiss/P11]
- Broadcast with feedback [Deborah/Goldsmith10]
- Finite state MAC with feedback [P/Weissman/Chen10]
- Compound channels with feedback [Shrader/P. 10]
- Quantity causality [Colman et al10][Zhao et al 10][Rao et al 08][Mathai et al107]...
In discrete time

\[I(X^n \rightarrow Y^n) \triangleq \sum_{i=1}^{n} I(X^i; Y_i | Y^{i-1}) . \]

How to define directed information in continuous-time?
Continuous time

In discrete time

\[I(X^n \rightarrow Y^n) \triangleq \sum_{i=1}^{n} I(X^i; Y_i | Y^{i-1}). \]

How to define directed information in continuous-time?

Recall continuous-value mutual information is defined as

\[I(X; Y) = \sup_{Q, P} I([X]_Q; [Y]_P), \]

where \(Q \) and \(P \) are partitions.

Main idea: use time-partition!
For a continuous-time process \(\{X_t\} \), let
\[
X_a^b = \{X_s : a \leq s < b\}.
\]
Let \(t = (t_1, t_2, \ldots, t_n) \) denote an \(n \)-dimensional vector
\[
0 \leq t_1 \leq t_2 \leq \cdots \leq t_n < T.
\]
Let \(X_{0}^{T,t} \) denote
\[
X_{0}^{T,t} = \left(X_{0}^{t_1}, X_{t_1}^{t_2}, \ldots, X_{t_{n-1}}^{t_n}, X_{t_n}^{T} \right).
\]
Directed information as a function of the time-partition
\[
I_t (X_{0}^{T} \rightarrow Y_{0}^{T}) \triangleq I (X_{0}^{T,t} \rightarrow Y_{0}^{T,t})
= \sum_{i=1}^{n} I \left(X_{0}^{t_i}, Y_{t_i}^{t_i} \mid Y_{0}^{t_{i-1}} \right)
\]
Directed information in continuous-time

Definition

Directed information between X_{0}^{T} and Y_{0}^{T} is defined as

$$
I \left(X_{0}^{T} \to Y_{0}^{T} \right) \triangleq \inf \limits_{t} I_{t} \left(X_{0}^{T} \to Y_{0}^{T} \right),
$$

where the infimum is over all partitions t.

Note that for continuous-value we had suprimum, and for continuous-time we use infimum.
Directed information in continuous-time

Definition

Directed information between X_0^T *and* Y_0^T *is defined as*

$$I \left(X_0^T \rightarrow Y_0^T \right) \triangleq \inf_t I_t \left(X_0^T \rightarrow Y_0^T \right),$$

where the infimum is over all partitions t.

Note that for continuous-value we had supremum, and for continuous-time we use infimum.

Lemma

If t' *is a refinement of* t, *then* $I_{t'} \left(X_0^T \rightarrow Y_0^T \right) \leq I_t \left(X_0^T \rightarrow Y_0^T \right)$.
Definition

Directed information between $X_T^{T_0}$ and $Y_T^{T_0}$ is defined as

$$I (X_T^{T_0} \to Y_T^{T_0}) \triangleq \inf_t I_t (X_T^{T_0} \to Y_T^{T_0}),$$

where the infimum is over all partitions t.

Note that for continuous-value we had supremum, and for continuous-time we use infimum.

Lemma

If t' is a refinement of t, then $I_{t'} (X_T^{T_0} \to Y_T^{T_0}) \leq I_t (X_T^{T_0} \to Y_T^{T_0}).$

For different durations we zero-pad at the beginning

$$I (X_{T_0}^{T_0-\delta} \to Y_T^{T_0}) := I ((X_{T_0}^{T_0-\delta}) \to Y_T^{T_0}).$$
Properties

- \(I \left(X_0^T \rightarrow Y_0^T \right) \leq I \left(X_0^T ; Y_0^T \right) \)

- **Monotonicity:** \(I(X_0^t \rightarrow Y_0^t) \) is monotone non-decreasing in \(t \)

- **Invariance to time scaling:** If \(\phi \) is monotone strictly increasing and continuous, and \((\tilde{X}_\phi(t), \tilde{Y}_\phi(t)) = (X_t, Y_t) \), then \(I(X_0^T \rightarrow Y_0^T) = I \left(\tilde{X}_\phi(T) \rightarrow \tilde{Y}_\phi(T) \right) \)

- **Coincidence of directed and mutual information:** If the Markov relation \(Y_0^t - X_0^t - X_t^T \) (no feedback) holds then
 \[
 I \left(X_0^T \rightarrow Y_0^T \right) = I \left(X_0^T ; Y_0^T \right)
 \]

- **Equivalent to discrete-time if the process is piecewise constant.**
Conservation law

If the continuity condition

\[
\lim_{\delta \to 0^+} [I(X_0^\delta; Y_0^\delta) + I(X_0^\delta \to Y_0^\delta|Y_0^\delta)] = I(X_0^T \to Y_0^T)
\]

holds then the directed information

\[
I\left(Y_0^{T-} \to X_0^T\right) \triangleq \lim_{\delta \to 0^+} I\left(Y_0^{T-\delta} \to X_0^T\right)
\]

exists and

\[
I\left(X_0^T \to Y_0^T\right) + I\left(Y_0^{T-} \to X_0^T\right) = I\left(X_0^T; Y_0^T\right)
\]

(this is continuous-time analogue of the conservation law

\[
I(U^n \to V^n) + I(V^{n-1} \to U^n) = I(U^n; V^n)
\]
Estimation: Duncan’s Theorem

Theorem (Duncan 1970)

Let X^T_0 be a signal of finite average power $\int_0^T E[X^2_t]dt < \infty$, independent of the standard Brownian motion $\{B_t\}$, and let Y^T_0 satisfy $dY_t = X_t dt + dB_t$. Then

$$\frac{1}{2} \int_0^T E[(X_t - E[X_t|Y^t_0])^2] dt = I(X_0^T; Y^T_0)$$

- The relationship holds regardless of distribution of X^T_0.
- The GSV theorem, $\frac{1}{2} \int_0^{\text{snr}} \text{mmse}^{(\text{snr}')} d\text{snr}' = I(\text{snr})$, is related.
Breakdown of the Duncan Relationship

- Duncan stipulates independence between X^T_0 and channel noise $\{B_t\}$
- excludes scenarios where evolution of X_t is affected by channel noise.
- for an extreme example, consider case $X_{t+\epsilon} = Y_t$
- in this case the causal MMSE

$$E \left[(X_t - E[X_t|Y^t_0])^2 \right] = 0$$

while the mutual information

$$I \left(X^T_0 ; Y^T_0 \right) = \infty$$
An Extension of Duncan’s Theorem

Let \(\{B_t\} \) be a standard Brownian motion, let \(\{W_t\} \) be independent of \(\{B_t\} \), and let \(\{(X_t, Y_t)\} \) satisfy

\[
X_t \in \sigma(Y_0^{t-}, W_0^T) \quad \text{and} \quad dY_t = X_t dt + dB_t.
\]

Then, provided \(\{X_t\} \) has finite average power

\[
\int_0^T E[X_t^2] dt < \infty,
\]

\[
\frac{1}{2} \int_0^T E \left[(X_t - E[X_t|Y_0^t])^2 \right] dt = I \left(X_0^T \rightarrow Y_0^T \right).
\]
The Poisson Channel

The following is the analogue of Duncan’s theorem for Poisson noise.

Theorem

Let X_{0}^{T} be a non-negative signal satisfying

$$E \int_{0}^{T} |X_t \log X_t| dt < \infty \text{ and, conditioned on } X_{0}^{T}, \text{ let } Y_{0}^{T} \text{ be a Poisson point process with rate function } X_{0}^{T}.$$

Then

$$\int_{0}^{T} E \left[\phi(X_t) - \phi \left(E[X_t | Y_{0}^{t}] \right) \right] dt = I \left(X_{0}^{T} ; Y_{0}^{T} \right),$$

where $\phi(\alpha) = \alpha \log \alpha$
The Poisson Channel

The following is the analogue of Duncan’s theorem for Poisson noise.

Theorem

Let X^T_0 be a non-negative signal satisfying

$$E \int_0^T |X_t \log X_t| dt < \infty \text{ and, conditioned on } X^T_0, \text{ let } Y^T_0 \text{ be a Poisson point process with rate function } X^T_0. \text{ Then}$

$$\int_0^T E \left[\phi(X_t) - \phi \left(E[X_t | Y^t_0] \right) \right] dt = I \left(X^T_0 ; Y^T_0 \right),$$

where $\phi(\alpha) = \alpha \log \alpha$

Note similarly as in Gaussian case:

- breaks down in presence of feedback
- in above theorem can replace $I \left(X^T_0 ; Y^T_0 \right)$ by

$I \left(X^T_0 \rightarrow Y^T_0 \right)$

H. Permuter, Y.-H Kim and T. Weissman Continues-Time Directed Information
An Extended ‘Duncan’s Theorem’ for the Poisson Channel

Theorem

Let Y_t be a point process and X_t be its \mathcal{F}_t^Y-predictable intensity. Then, provided

$$E \int_0^T |X_t \log X_t| dt < \infty ,$$

$$\int_0^T E \left[\phi(X_t) - \phi \left(E[X_t | Y_0^t] \right) \right] dt = I \left(X_0^T \rightarrow Y_0^T \right)$$
Continuous-time communication

\[M \in \{1, \ldots, 2^{nT}\} \]

- Message

Encoder

\[x_t(m, y_{t-\Delta}) \]

Channel

\[g(X_t, Z_t) \]

Decoder

\[\hat{m}(y^T_0) \]

Message est.

- The channel of the form \(Y_t = g(X_t, Z_t) \), where \(Z_t \) is a block ergodic process.
- The encoder assigns a symbol \(x_t(m, y_{t-\Delta}) \)
- Message \(M \) independent of the noise process \(\{Z_t\} \).

Definition

\[C(\Delta) = \sup\{R : R \text{ is achievable with feedback delay } \Delta\} \quad (1) \]
Entropy capacity result

\[C^I(\Delta) \triangleq \lim_{T \to \infty} \frac{1}{T} \sup_{S_\Delta} I(X^T_0 \to Y^T_0), \]

where the supremum in is over

\[X_t = \begin{cases} g_t(U_t, Y^t_0 - \Delta) & t \geq \Delta, \\ g_t(U_t) & t < \Delta, \end{cases} \]

The limit is shown to exist due to super-additivity.

Theorem

For this channel

\[C(\Delta) \leq C^I(\Delta), \]
\[C(\Delta) \geq C^I(\Delta') \quad \text{for all } \Delta' > \Delta. \]

Since \(C^I(\Delta) \) is a decreasing function in \(\Delta \), \(C(\Delta) = C^I(\Delta) \) for any \(\Delta \geq 0 \) except of a set of points of measure zero.
\[I(X^n; Y^n) \] amount of uncertainty about \(Y^n \) reduced by knowing \(X^n \)

\[I(X^n \rightarrow Y^n) \] amount of uncertainty about \(Y^n \) reduced by knowing \(X^n \) causally.

Important role for discrete-time directed information in network information theory with feedback, feed-forward rate distortion, causality measure, horse-race market and lossless compression with causal side information.

For continuous-time the idea of time-partition is useful.

We saw an important role of directed information in continuous-time estimation and feedback-capacity.
summary

- $I(X^n; Y^n)$ amount of uncertainty about Y^n reduced by knowing X^n
- $I(X^n \rightarrow Y^n)$ amount of uncertainty about Y^n reduced by knowing X^n causally.

Important role for discrete-time directed information in network information theory with feedback, feed-forward rate distortion, causality measure, horse-race market and lossless compression with causal side information.

For continuous-time the idea of time-partition is useful.

We saw an important role of directed information in continuous-time estimation and feedback-capacity.

Thank you very much!