Homework Set #6
Source channel separation, Max entropy principle, and channel coding with side information

1. Fading channel.
 Consider an additive noise fading channel
 \[\begin{align*}
 &V \\
 &Z \\
 &\sum \\
 &Y = XV + Z,
 \end{align*} \]
 where \(Z \) is additive noise, \(V \) is a random variable representing fading, and \(Z \) and \(V \) are independent of each other and of \(X \).
 (a) Argue that knowledge of the fading factor \(V \) improves capacity by showing
 \[I(X;Y|V) \geq I(X;Y). \]
 (b) Incidentally, conditioning does not always increase mutual information. Give an example of \(p(u,r,s) \) such that \(I(U;R|S) < I(U;R) \).

2. Diversity System
 For the following system, a message \(W \in \{1,2,\ldots,2^{nR}\} \) is encoded into two symbol blocks \(X^n_1 = (X_{1,1},X_{1,2},\ldots,X_{1,n}) \) and \(X^n_2 = (X_{2,1},X_{2,2},\ldots,X_{2,n}) \) that are being transmitted over a channel. The average power constrain on the inputs are \(\frac{1}{n} E[\sum_{i=1}^{n} X^2_{1,i}] \leq P_1 \) and \(\frac{1}{n} E[\sum_{i=1}^{n} X^2_{2,i}] \leq P_2 \). The channel has a multiplying effect on \(X_1, X_2 \) by factor \(h_1, h_2 \), respectively, i.e., \(Y = h_1X_1 + h_2X_2 + Z \), where \(Z \) is a white Gaussian noise \(Z \sim N(0,\sigma^2) \).
 (a) Find the joint distribution of \(X_1 \) and \(X_2 \) that bring the mutual information \(I(Y;X_1,X_2) \) to a maximum? (You need to find \(\arg\max P_{X_1,X_2} I(X_1,X_2;Y) \)).
 (b) What is the capacity of the system?
(c) Express the capacity for the following cases:

i. $h_1 = 1, h_2 = 1$?

ii. $h_1 = 1, h_2 = 0$?

iii. $h_1 = 0, h_2 = 0$?

3. **AWGN with two noises** (15 points)

Figure 2 depicts a communication system with an AWGN (Additive white noise Gaussian) channel with two i.i.d. noises $Z_1 \sim N(0, \sigma_1^2)$, $Z_2 \sim N(0, \sigma_2^2)$ that are independent of each other and are added to the signal X, i.e., $Y = X + Z_1 + Z_2$. The average power constrain on the input is P, i.e., $\frac{1}{n}E[\sum_{i=1}^{n} X_i^2] \leq P$. In the sub-questions below we consider the cases where the noise Z_2 may or may not be known to the encoder and decoder.
(a) Find the channel capacity for the case in which the noise in not known to either sides (lines 1 and 2 are disconnected from the encoder and the decoder).

(b) Find the capacity for the case that the noise Z_2 is known to the encoder and decoder (lines 1 and 2 are connected to both the encoder and decoder). This means that the codeword X^n may depend on the message W and the noise Z_2^n and the decoder decision \hat{W} may depend on the output Y^n and the noise Z_2^n. (Hint: Could the capacity be larger than $\frac{1}{2} \log(1 + \frac{P}{\sigma^2})$?)

(c) Find the capacity for the case that the noise Z_2 is known only to the decoder. (line 1 is disconnected from the encoder and line 2 is connected to the decoder). This means that the codewords X^n may depend only on the message W and the decoder decision \hat{W} may depend on the output Y^n and the noise Z_2^n.

4. Source and channel. (Please read the relevant lecture on source channel separation)
We wish to encode a Bernoulli(α) process V_1, V_2, \ldots for transmission over a binary symmetric channel with error probability p.

\[
\begin{array}{ccccccc}
V^n & \rightarrow & X^n(V^n) & \rightarrow & 1 & \xrightarrow{p} & 1 & \rightarrow & Y^n & \rightarrow & \hat{V}^n \\
011011101 & & & & 0 & \xrightarrow{p} & 0 & & 011011101 \\
\end{array}
\]

Find conditions on α and p so that the probability of error $P(\hat{V}^n \neq V^n)$ can be made to go to zero as $n \rightarrow \infty$.

5. Maximum entropy.
Find the maximum entropy density f satisfying $EX = \alpha_1, E \ln X = \alpha_2$. That is,

\[
\text{maximize } h(f)
\]

subject to $\int x f(x) \, dx = \alpha_1, \int (\ln x) f(x) \, dx = \alpha_2$. What family of densities is this?
6. **Minimum relative entropy** $D(P \parallel Q)$ **under constraints on** P.

We wish to find the (parametric form) of the probability mass function $P(x), x \in \{1, 2, \ldots\}$ that minimizes the relative entropy $D(P \parallel Q)$ over all P such that $\sum P(x)g_i(x) = \alpha_i, i = 1, 2, \ldots$.

(a) Use Lagrange multipliers to guess that $P^*(x) = Q(x)e^{\sum_{i=1}^{\infty} \lambda_i g_i(x) + \lambda_0}$ achieves this minimum if there exist λ_i’s satisfying the α_i constraints. This generalizes the theorem on maximum entropy distributions subject to constraints.

(b) Verify that P^* minimizes $D(P \parallel Q)$.

7. **Maximum entropy with marginals.**

What is the maximum entropy probability mass function $p(x, y)$ with the following marginals? You may wish to guess and verify a more general result.

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>p_{11}</td>
<td>p_{12}</td>
<td>p_{13}</td>
</tr>
<tr>
<td>x_2</td>
<td>p_{21}</td>
<td>p_{22}</td>
<td>p_{23}</td>
</tr>
<tr>
<td>x_3</td>
<td>p_{31}</td>
<td>p_{32}</td>
<td>p_{33}</td>
</tr>
</tbody>
</table>

$2/3 \quad 1/6 \quad 1/6$