1. Preprocessing the output.
 One is given a communication channel with transition probabilities
 \(p(y | x) \) and channel capacity \(C = \max_{p(x)} I(X; Y) \). A helpful statisti-
 cian preprocesses the output by forming \(\tilde{Y} = g(Y) \), yielding a channel
 \(p(\tilde{y} | x) \). He claims that this will strictly improve the capacity.

 (a) Show that he is wrong.
 (b) Under what conditions does he not strictly decrease the capacity?

2. The Z channel.
 The Z-channel has binary input and output alphabets and transition
 probabilities \(p(y | x) \) given by the following matrix:
 \[
 Q = \begin{bmatrix}
 1 & 0 \\
 1/2 & 1/2
 \end{bmatrix}
 \]
 \(x, y \in \{0, 1\} \)

 Find the capacity of the Z-channel and the maximizing input probabil-
 ity distribution.

3. Using two channels at once.
 Consider two discrete memoryless channels \((X_1, p(y_1 | x_1), Y_1)\) and
 \((X_2, p(y_2 | x_2), Y_2)\) with capacities \(C_1 \) and \(C_2 \) respectively. A new
 channel \((X_1 \times X_2, p(y_1 | x_1) \times p(y_2 | x_2), Y_1 \times Y_2)\) is formed in which
 \(x_1 \in X_1 \) and \(x_2 \in X_2 \), are simultaneously sent, resulting in \(y_1, y_2 \). Find
 the capacity of this channel.

4. A channel with two independent looks at Y.
 Let \(Y_1 \) and \(Y_2 \) be conditionally independent and conditionally identi-
 cally distributed given \(X \). Thus \(p(y_1, y_2 | x) = p(y_1 | x)p(y_2 | x) \).

 (a) Show \(I(X; Y_1, Y_2) = 2I(X; Y_1) - I(Y_1; Y_2) \).
 (b) Conclude that the capacity of the channel

 \[
 X \rightarrow (Y_1, Y_2)
 \]
is less than twice the capacity of the channel

\[X \rightarrow Y_1 \]

5. **Choice of channels.**
Find the capacity \(C \) of the union of 2 channels \((X_1, p_1(y_1|x_1), Y_1)\) and \((X_2, p_2(y_2|x_2), Y_2)\) where, at each time, one can send a symbol over channel 1 or over channel 2 but not both. Assume the output alphabets are distinct and do not intersect.

(a) Show \(2^C = 2^{C_1} + 2^{C_2} \).

(b) What is the capacity of this Channel?

\[1 \rightarrow 1 \]
\[2 \rightarrow 2 \]
\[3 \rightarrow 3 \]

6. **Cascaded BSCs.**
Consider the two discrete memoryless channels \((X, p_1(y|x), Y)\) and \((Y, p_2(z|y), Z)\).
Let \(p_1(y|x) \) and \(p_2(z|y) \) be binary symmetric channels with crossover probabilities \(\lambda_1 \) and \(\lambda_2 \) respectively.
(a) What is the capacity C_1 of $p_1(y|x)$?

(b) What is the capacity C_2 of $p_2(z|y)$?

(c) We now cascade these channels. Thus $p_3(z|x) = \sum_y p_1(y|x)p_2(z|y)$. What is the capacity C_3 of $p_3(z|x)$? Show $C_3 \leq \min\{C_1, C_2\}$.

(d) Now let us actively intervene between channels 1 and 2, rather than passively transmitting y^n. What is the capacity of channel 1 followed by channel 2 if you are allowed to decode the output y^n of channel 1 and then reencode it as \tilde{y}^n for transmission over channel 2? (Think $W \rightarrow x^n(W) \rightarrow y^n \rightarrow \tilde{y}^n(y^n) \rightarrow z^n \rightarrow \hat{W}$.)

(e) What is the capacity of the cascade in part c) if the receiver can view both Y and Z?

7. Channel capacity

(a) What is the capacity of the following channel

```
               1
            /   \
           0     1
          / \   / \     \
         1   1\ 1/2/ 2
        /   /  \  \   \
       2   3 \ 1/2/ 4
       /     /   \
      3     4 \
```

(b) Provide a simple scheme that can transmit at rate $R = \log_2 3$ bits through this channel.