Homework Set #1
Properties of Entropy and Mutual Information

1. Entropy of functions of a random variable.
Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X by justifying the following steps:

$$H(X, g(X)) = H(X) + H(g(X)|X)$$

(a)

$$H(X, g(X)) = H(g(X)|X)$$

(b)

$$H(X, g(X)) = H(g(X)) + H(X|g(X))$$

(c)

$$H(X, g(X)) = H(g(X)) + H(X|g(X))$$

(d)

Thus $H(g(X)) \leq H(X)$.

Solution: Entropy of functions of a random variable.

(a) $H(X, g(X)) = H(X) + H(g(X)|X)$ by the chain rule for entropies.
(b) $H(g(X)|X) = 0$ since for any particular value of X, $g(X)$ is fixed, and hence $H(g(X)|X) = \sum_x p(x)H(g(X)|X = x) = \sum_x 0 = 0$.
(c) $H(X, g(X)) = H(g(X)) + H(X|g(X))$ again by the chain rule.
(d) $H(X|g(X)) \geq 0$, with equality iff X is a function of $g(X)$, i.e., $g(.)$ is one-to-one. Hence $H(X, g(X)) \geq H(g(X))$.

Combining parts (b) and (d), we obtain $H(X) \geq H(g(X))$.

2. Example of joint entropy.
Let $p(x, y)$ be given by

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0 1</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>
Find

(a) $H(X), H(Y)$.
(b) $H(X|Y), H(Y|X)$.
(c) $H(X, Y)$.
(d) $H(Y) - H(Y|X)$.
(e) $I(X; Y)$.

3. “True or False” questions

Copy each relation and write true or false. Then, if it’s true, prove it. If it is false give a counterexample or prove that the opposite is true.

(a) $H(X) \geq H(X|Y)$
(b) $H(X) + H(Y) \leq H(X, Y)$
(c) Let X, Y be two independent random variables. Then

$$H(X - Y) \geq H(X).$$

4. Solution to “True or False” questions e.

(a) $H(X) \geq H(X|Y)$ is true. Proof: In the class we showed that $I(X; Y) > 0$, hence $H(X) - H(X|Y) > 0$.

(b) $H(X) + H(Y) \leq H(X, Y)$ is false. Actually the opposite is true, i.e., $H(X) + H(Y) \geq H(X, Y)$ since $I(X; Y) = H(X) + H(Y) - H(X, Y) \geq 0$.

(c) Let X, Y be two independent random variables. Then

$$H(X - Y) \geq H(X).$$

True

$$H(X - Y) \overset{(a)}{\geq} H(X - Y|Y) \overset{(b)}{\geq} H(X)$$

(a) follows from the fact that conditioning reduces entropy.
(b) Follows from the fact that given Y, $X - Y$ is a Bijective Function.
5. **Bytes.**

The entropy, $H_a(X) = -\sum p(x) \log_a p(x)$ is expressed in bits if the logarithm is to the base 2 and in bytes if the logarithm is to the base 256. What is the relationship of $H_2(X)$ to $H_{256}(X)$?

Solution: Bytes.

$$H_2(X) = -\sum p(x) \log_2 p(x)$$
$$= -\sum p(x) \frac{\log_2 p(x)}{\log_{256}(2)}$$
$$\overset{(a)}{=} -\sum p(x) \frac{\log_{256} p(x)}{\log_{256}(2)}$$
$$= \frac{-1}{\log_{256}(2)} \sum p(x) \log_{256} p(x)$$
$$\overset{(b)}{=} \frac{H_{256}(X)}{\log_{256}(2)},$$

where (a) comes from the property of logarithms and (b) follows from the definition of $H_{256}(X)$. Hence we get

$$H_2(X) = 8H_{256}(X).$$

Solution: Example of joint entropy

(a) $H(X) = \frac{2}{3} \log \frac{3}{2} + \frac{1}{3} \log 3 = .918$ bits $= H(Y)$.

(b) $H(X|Y) = \frac{1}{3} H(X|Y = 0) + \frac{2}{3} H(X|Y = 1) = .667$ bits $= H(Y|X)$.

(c) $H(X, Y) = 3 \times \frac{1}{3} \log 3 = 1.585$ bits.

(d) $H(Y) - H(Y|X) = .251$ bits.

(e) $I(X; Y) = H(Y) - H(Y|X) = .251$ bits.

6. **Two looks.**

Here is a statement about pairwise independence and joint independence. Let X, Y_1, and Y_2 be binary random variables. If $I(X; Y_1) = 0$ and $I(X; Y_2) = 0$, does it follow that $I(X; Y_1, Y_2) = 0$?
(a) Yes or no?

(b) Prove or provide a counterexample.

(c) If \(I(X; Y_1) = 0 \) and \(I(X; Y_2) = 0 \) in the above problem, does it follow that \(I(Y_1; Y_2) = 0 \)? In other words, if \(Y_1 \) is independent of \(X \), and if \(Y_2 \) is independent of \(X \), is it true that \(Y_1 \) and \(Y_2 \) are independent?

Solution: Two looks.

(a) The answer is “no”.

(b) Although at first the conjecture seems reasonable enough—after all, if \(Y_1 \) gives you no information about \(X \), and if \(Y_2 \) gives you no information about \(X \), then why should the two of them together give any information? But remember, it is NOT the case that

\[
I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2).
\]

The chain rule for information says instead that

\[
I(X; Y_1, Y_2) = I(X; Y_1) + I(X; Y_2 | Y_1).
\]

The chain rule gives us reason to be skeptical about the conjecture.

This problem is reminiscent of the well-known fact in probability that pair-wise independence of three random variables is not sufficient to guarantee that all three are mutually independent. \(I(X; Y_1) = 0 \) is equivalent to saying that \(X \) and \(Y_1 \) are independent. Similarly for \(X \) and \(Y_2 \). But just because \(X \) is pair-wise independent with each of \(Y_1 \) and \(Y_2 \), it does not follow that \(X \) is independent of the vector \((Y_1, Y_2) \).

Here is a simple counterexample. Let \(Y_1 \) and \(Y_2 \) be independent fair coin flips. And let \(X = Y_1 \text{ XOR } Y_2 \). \(X \) is pair-wise independent of both \(Y_1 \) and \(Y_2 \), but obviously not independent of the vector \((Y_1, Y_2) \), since \(X \) is uniquely determined once you know \((Y_1, Y_2) \).

(c) Again the answer is “no”. \(Y_1 \) and \(Y_2 \) can be arbitrarily dependent with each other and both still be independent of \(X \). For example, let \(Y_1 = Y_2 \) be two observations of the same fair coin flip, and \(X \) an independent fair coin flip. Then \(I(X; Y_1) = I(X; Y_2) = 0 \) because \(X \) is independent of both \(Y_1 \) and \(Y_2 \). However, \(I(Y_1; Y_2) = H(Y_1) - H(Y_1 | Y_2) = H(Y_1) = 1 \).
7. **A measure of correlation.**

Let X_1 and X_2 be *identically distributed*, but not necessarily independent. Let

$$\rho = 1 - \frac{H(X_2|X_1)}{H(X_1)}.$$

(a) Show $\rho = I(X_1;X_2)/H(X_1)$.

(b) Show $0 \leq \rho \leq 1$.

(c) When is $\rho = 0$?

(d) When is $\rho = 1$?

Solution: A measure of correlation.

X_1 and X_2 are identically distributed and

$$\rho = 1 - \frac{H(X_2|X_1)}{H(X_1)}$$

(a)

$$\rho = \frac{H(X_1) - H(X_2|X_1)}{H(X_1)} = \frac{H(X_2) - H(X_2|X_1)}{H(X_1)} \quad \text{(since } H(X_1) = H(X_2))$$

$$\rho = \frac{I(X_1;X_2)}{H(X_1)}.$$

(b) Since $0 \leq H(X_2|X_1) \leq H(X_2) = H(X_1)$, we have

$$0 \leq \frac{H(X_2|X_1)}{H(X_1)} \leq 1$$

$$0 \leq \rho \leq 1.$$

(c) $\rho = 0$ iff $I(X_1;X_2) = 0$ iff X_1 and X_2 are independent.

(d) $\rho = 1$ iff $H(X_2|X_1) = 0$ iff X_2 is a function of X_1. By symmetry, X_1 is a function of X_2, i.e., X_1 and X_2 have a one-to-one correspondence. For example, if $X_1 = X_2$ with probability 1 then $\rho = 1$. Similarly, if the distribution of X_i is symmetric then $X_1 = -X_2$ with probability 1 would also give $\rho = 1$.

5