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Multi-User Information Theory 2. December 6nd, 2010

Lecture 9

Lecturer: Haim Permuter Scribe: Uria Basher

I. STOCHASTIC DEGRADED BROADCAST CHANNEL

Recall, the definition of the physically degraded broadcastchannel (BC).

Definition 1 (Physically Degraded BC)

A broadcast channel given byp(y1, y2|x) is said to be(physically degraded) if

p(y1, y2|x) = p(y1|x)p(y2|y1), ∀x ∈ X , ∀y1 ∈ Y1, ∀y2 ∈ Y2. (1)

Let us define the stochastic degraded BC,

Definition 2 (Stochastic degraded BC)

A broadcast channel given byp(y1, y2|x) is said to be(stochastic degraded) if its conditional marginal

distributionsp(y1|x) andp(y2|x) are the same as that of a physically degraded broadcast channel; that is,

if there exists a distributionp′(y2|y1) such that

p(y2|x) =
∑

y1

p(y1|x)p
′(y2|y1). (2)

Theorem 1: The capacity region of a broadcast channel depends only on the conditional marginal

distributionsp(y1|x) andp(y2|x).

Proof: See HW2. Hint: for any given(2nR1, 2nR2, n) code, let

P
(n)
1 = P{Ŵ1(Y1) 6= W1},

P
(n)
2 = P{Ŵ2(Y2) 6= W2},

P (n) = P{Ŵ1, Ŵ2 6= W1,W2}.

Then show

max{P
(n)
1 , P

(n)
2 } ≤ P (n) ≤ P

(n)
1 + P

(n)
2 .

Note that since the capacity of a BC depends only on the conditional marginals, the capacity region of the

stochastically degraded BC is the same as that of the corresponding physically degraded channel.

Example 1 (Gaussian BC is stochastic degraded)

The Gaussian BC is illustrated in Fig. 1. It can easily be shown that all scalar Gaussian broadcast channels
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Fig. 1. Gaussian BC.

are equivalent to this type of degraded channel,

Y1 = X + Z1,

Y2 = X + Z2 = Y1 + Z ′
2,

whereZ1 ∼ N (0, N1) andZ2 ∼ N (0, N2 −N1).

Example 2 ( Capacity region of binary symmetric BC)

Consider a pair of binary symmetric channels with parameters p1 andp2 that form a BC as shown in Fig.

2. Without loss of generality, we assume thatp1 ≤ p2 ≤ 1
2 . This is stochastic degraded channel since we
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Fig. 2. Binary symmetric BC.

can recast this channel as a physically degraded channel. Namely, we can express the binary symmetric

channel with parameterp2 as a cascade of a binary symmetric channel with parameterp1 with another
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binary symmetric channel. Let the crossover probability ofthe new channel beα. Then we must have
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Fig. 3. Stochastic degraded binary symmetric BC.

p1(1− α) + (1 − p1)α = p2,

(3)

therefore,

α =
p2 − p1
1− 2p1

,

Note that under the assumption ofp1 ≤ p2 ≤ 1
2 , 0 ≤ α ≤ 1

2 . Now, by symmetry we connectU to X

by another binary symmetric channel with parameterβ, as illustrated in Fig. 3. Let us calculate the rates

in the capacity region. It is clear by symmetry, that the distribution onU that maximizes the rates is the

U ∼ Binary(0.5), Therefore,

I(U ;Y2) = H(Y2)−H(Y2|U)

= 1−H(β ∗ p2),

where

β ∗ p2 = β(1− p2) + (1− β)p2.

Similarly,

I(X ;Y1|U) = H(Y1|U)−H(Y1|U,X)

= H(Y1|U)−H(Y1|X)

= H(β ∗ p1)−H(p1).

Hence, the capacity region of a binary symmetric BC is:

R1 ≤ H(β ∗ p1)−H(p1),

R2 ≤ 1−H(β ∗ p2),
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(4)

for someβ ∈ [0, 1
2 ]. Whenβ = 0, we have the maximum information transfer toY2, i.e., (R1 = 0, R2 = 1−

H(p2)). Whenβ = 0.5, we have the maximum information transfer toY1, i.e., (R1 = 1−H(P1), R2 = 0).

For an additional proof of the capacity region of a binary symmetric broadcast channel see [1, Chapter 5].

II. I NNER BOUND FORGENERAL BROADCAST CHANNEL- MARTON REGION

In this section we prove the inner bound (achievability) forthe general broadcast channel [2], which is

the best achievable region known for the general broadcast channel.

To prove the achievability of the capacity region, we need toshow that for a fix

p(u1, u2)P (x|u1, u2)P (y1, y2|x) and (R1, R2) that satisfy

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2),

R1 +R2 ≤ I(U1;Y1) + I(U2;Y2)− I(U1;U2),

there exists a sequence of(n, 2nR1 , 2nR2) codes whereP (n)
e → 0 asn → ∞.

Proof: We prove the inner bound by achieving the two corner points ofthe rate region, i.e., (R1 =

I(U1;Y1)− ǫ, R2 = I(U2;Y2)−I(U1;U2)− ǫ), and (R1 = I(U1;Y1)−I(U1;U2)− ǫ, R2 = I(U2;Y2)− ǫ).

Code design:

1) Generate2nR1 independent codewords of lengthn, Un
1 , according toUn

1 (m1) ∼ i.i.d. p(u1). To

each codewordUn
1 associate a messagem1 ∈ M1 =

{

1, 2, ..., 2nR1

}

.

2) Generate2nR2 bins, in each bin generate2n(I(U1;U2)+ǫ) independent codewords of lengthn, Un
2 ,

according toUn
2 ∼ i.i.d. p(u2). To each bin associate a messagem2 ∈ M2 =

{

1, 2, ..., 2nR2

}

.

Encoder: Given a pair of messages(m1,m2), the encoder first choose theUn
1 that associated withm1,

i.e., Un
1 (m1). Then, search forUn

2 in bin m2, such that

(Un
1 (m1), U

n
2 ) ∈ T n

ǫ (U1, U2). (5)

If the encoder found suchUn
2 in bin m2, it transmitsXn, whereXn = f(Un

1 , U
n
2 ). Otherwise, the encoder

declares an error.

Decoder 1: Search forUn
1 such that

(Un
1 , Y

n
1 ) ∈ T n

ǫ (U1, Y1). (6)

If decoder1 found suchUn
1 , it declares the messagêm1 that associated withUn

1 . Otherwise, decoder1

declares an error.

Decoder 2: Search forUn
2 such that

(Un
2 , Y

n
2 ) ∈ T n

ǫ (U2, Y2). (7)
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If decoder2 found suchUn
2 , it declares the bin that containsUn

2 to be the messagêm2. Otherwise, decoder

2 declares an error.

Analysis of the probability of error: Without loss of generality, we assume that(M1 = 1,M2 = 1) was

sent. Furthermore, we denote byUn
2 (k1, k2) to be thek1 codeword in the bink2, wherek1 ∈ K1 =

{

1, 2, .., 2nI(U1,U2)+ǫ)
}

, k2 ∈ K2 =
{

1, 2, .., 2nR2

}

. Let us define the following events:

E1 = {(Un
1 (1), U

n
2 (k1, 1)) /∈ T n

ǫ (U1, U2), ∀k1 ∈ K1} . (8)

E2 = {(Un
1 (1), Y

n
1 ) /∈ T n

ǫ (U1, Y1}). (9)

E3 = {∃i 6= 1 : (Un
1 (i), Y

n
1 ) ∈ T n

ǫ (U1, Y1), i ∈ M1} . (10)

E4 = {(Un
2 (1, 1), Y

n
2 ) /∈ T n

ǫ (U2, Y1)} . (11)

E5 = {∃(k1, k2) 6= (1, 1) : (Un
2 (k1, k2), Y

n
2 ) ∈ T n

ǫ (U2, Y2), (k1, k2) ∈ K1 ×K2} . (12)

Then by the union of events bound,

Pn
e = Pr(

5
⋃

i=1

Ei)

≤
5

∑

i=1

P (Ei) . (13)

Now let us find the probability of each event,

• P (E1)- in each bin, and in particular in bin1, there is2n(I(U1;U2)+ǫ) codewordsUn
2 . Therefore, by

using the covering lemma, asn → ∞

P (E1) → 0. (14)

• P (E2)- using the L.L.N., asn → ∞ the probability of error,

P (E2) → 0. (15)

• P (E3)- by the union of events bound, the probability of the eventE3,

P (E3) = Pr {∃i 6= 1 : (Un
1 (i), Y

n
1 ) ∈ T n

ǫ (U1, Y1), i ∈ M1}

≤
2nR1

∑

i=2

P ((Un
1 (i), Y

n
1 ) ∈ T n

ǫ (U1, Y1))

≤ 2nR1 · 2−n(I(U1,Y1)−ǫ). (16)

For P (E3) → 0 asn → ∞, we need to choose,

R1 < I(U1, Y1)− ǫ. (17)

• P (E4)- using the L.L.N., asn → ∞ the probability of the eventE4,

P (E4) → 0. (18)



9-6

• P (E5)- by the union of events bound, the probability of the eventE5,

P (E5) = Pr {∃(k1, k2) 6= (1, 1) : (Un
2 (k1, k2), Y

n
2 ) ∈ T n

ǫ (U2, Y2), (k1, k2) ∈ K1 ×K2}

≤
∑

(k1,k2) 6=(1,1)

P ((Un
2 (k1, k2), Y

n
2 ) ∈ T n

ǫ (U2, Y2))

≤ 2n(I(U1;U2)+ǫ) · 2nR2 · 2−n(I(U2;Y2)−ǫ). (19)

For P (E5) → 0 asn → ∞, we need to choose,

R2 < I(U2, Y2)− I(U1, U2)− 2ǫ. (20)

Thus, the total average probability of decoding errorP
(n)
e → 0 asn → ∞ if (R1 = I(U1;Y1) − ǫ, R2 =

I(U2;Y2)−I(U1;U2)−ǫ). The achievability of the other corner point follows by changing the code design

order. To show achievability of other points inR, we use time sharing between corner points and points

on the axes.

Thus, the probability of error, conditioned on a particularcodeword being sent, goes to zero if the conditions

of the following are met:

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2),

R1 +R2 ≤ I(U1;Y1) + I(U2;Y2)− I(U1;U2).

The above bound shows that the average probability of error,which by symmetry is equal to the probability

for an individual pair of codewords(m1,m2), averaged over all choices of codebooks in the random code

construction, is arbitrarily small. Hence, there exists atleast one code(n, 2nR1 , 2nR2) with arbitrarily small

probability of error. To complete the proof we use time-sharing to allow any(R1, R2) in the convex hull

to be achieved.
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