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Multi-User Information Theory 2. December 6nd, 2010

Lecture 9

Lecturer: Haim Permuter Scribe: Uria Basher

|. STOCHASTIC DEGRADED BROADCAST CHANNEL
Recall, the definition of the physically degraded broadchsinnel (BC).
Definition 1 (Physically Degraded BC)
A broadcast channel given Ip(y:, y2|x) is said to be(physically degraded) if
Py, y2lz) = p(y1|x)p(y2ly1), Vo € X, Yy € Y1, Vyz € Va. 1)
Let us define the stochastic degraded BC,

Definition 2 (Sochastic degraded BC)
A broadcast channel given by(y1, y2|z) is said to be(stochastic degraded) if its conditional marginal
distributionsp(y: |z) andp(y2|z) are the same as that of a physically degraded broadcasteh#mat is,

if there exists a distributiop’ (y2|y1) such that
plyel) = > pyslo)p (v2lyr)- 2
Y1

Theorem 1: The capacity region of a broadcast channel depends onlyhenconditional marginal

distributionsp(y:|z) andp(ya|z).

Proof: See HW2. Hint: for any given(2"%#1 2712 n) code, let

P = P{Wi(n1) # Wi},
P = P{Wa(Ya) # W},
PM = P{Wy, Wy # Wy, Wa}.

Then show
maa:{Pl("),PQ(”)} < P(n) < P1(n) +P2(n),

[ |
Note that since the capacity of a BC depends only on the donditmarginals, the capacity region of the

stochastically degraded BC is the same as that of the camegpg physically degraded channel.

Example 1(Gaussian BC is stochastic degraded)

The Gaussian BC is illustrated in Fig. 1. It can easily be shtvat all scalar Gaussian broadcast channels
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Zy ~ N(0,Ny) Z ~ N (0, Ny — Ny)

Zy ~ N(0,N2)

Fig. 1. Gaussian BC.

are equivalent to this type of degraded channel,

i, = X+ 24,

Yo = X+ 2Zy=Y)+ 25,
whereZ; ~ N'(0, Ny) and Zy ~ N (0, No — Ny).

Example 2( Capacity region of binary symmetric BC)
Consider a pair of binary symmetric channels with paramseteandp, that form a BC as shown in Fig.

2. Without loss of generality, we assume that< p, < % This is stochastic degraded channel since we

Y

Fig. 2. Binary symmetric BC.

can recast this channel as a physically degraded channelelMawe can express the binary symmetric

channel with parametes, as a cascade of a binary symmetric channel with parameterith another
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binary symmetric channel. Let the crossover probabilitghaf new channel be. Then we must have

1-— 1-— _
0 B . 0 P . 0 11—« . 0
b1 «
U X Yy Y2
B P1 a
1 > 1 > 1 > 1
1-p 1—p -«

Fig. 3. Stochastic degraded binary symmetric BC.

pi(l—a)+ (1 —pia = po,
3
therefore,
o P2—M1
1—2p;y’

Note that under the assumption pf < p» < 1, 0 < a < 1. Now, by symmetry we connedf to X
by another binary symmetric channel with parameters illustrated in Fig. 3. Let us calculate the rates
in the capacity region. It is clear by symmetry, that theriistion onU that maximizes the rates is the

U ~ Binary(0.5), Therefore,

I(U;Yz) = H(Y2) - H(Y2|U)
= 1—H(B+*pa),
where
Bxpa = B(l—p2)+(1—B)p2.
Similarly,
I(X;n|U) = HMW[U) - HMN|U, X)

— HWU) - HYi|X)

H(B+p1) — H(p1)-

Hence, the capacity region of a binary symmetric BC is:

Ry < H(Bxp1)— H(p),

RQ S 1_H(6*p2)5
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(4)
for somes € [0, %]. Wheng = 0, we have the maximum information transfeitg i.e., (R = 0, Rp = 1—

H(p2)). Wheng = 0.5, we have the maximum information transferto, i.e., R, = 1— H(P1), R = 0).

For an additional proof of the capacity region of a binary syetric broadcast channel see [1, Chapter 5].

II. INNER BOUND FORGENERAL BROADCAST CHANNEL- MARTON REGION

In this section we prove the inner bound (achievability) ttee general broadcast channel [2], which is
the best achievable region known for the general broad¢esinel.
To prove the achievability of the capacity region, we need s$bow that for a fix

p(u1, u2) P(x|ui, uz) P(y1, y2|z) and Ry, R2) that satisfy
Rl S I(U17 Y1)7

Ry

IN

I(UQ;YQ),
Ri+ Ry < I(Uy;Y1) + I(Ug; Ya) — I(Uy; Ua),

there exists a sequence (of, 271 2"F2) codes where?™ — 0 asn — .

Proof: We prove the inner bound by achieving the two corner pointthefrate region, i.e.,K; =
I(U; Y1) —€, Ry = I(U; Y2) = I(U1;Uz) —¢), and Ry = I(U1; Y1) — I(U1; Us) —€, Ry = I(Uz; Ya) —€).
Code design:

1) Generate2"' independent codewords of length U7, according toU? (my) ~ i.i.d. p(uy). To
each codeword/]* associate a message; € M; = {1,2, e 2”31}.
2) Generate2™®> bins, in each bin genera®(/(V1:U2)+¢) independent codewords of length U,
according toU} ~ i.i.d. p(uz). To each bin associate a messagg < My = {1,2, - 2”R2}.
Encoder: Given a pair of messagdsni, m2), the encoder first choose ti&* that associated withn,

i.e., Ul*(m1). Then, search fot’} in bin mq, such that
(UT'(m1),U3') € T (Us, Ua). (5)
If the encoder found suctiy in bin mg, it transmitsX™, whereX™ = f(UJ", U¥). Otherwise, the encoder

declares an error.

Decoder 1: Search forU}* such that
(U Y") € THU1, ). (6)

If decoderl found suchU7", it declares the messagg; that associated witl/]*. Otherwise, decoder
declares an error.

Decoder 2: Search forU3' such that

(U3, Y5") € T Uy, Ya). ()
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If decoder2 found suchl/, it declares the bin that containg’ to be the messagé,. Otherwise, decoder
2 declares an error.

Analysis of the probability of error: Without loss of generality, we assume thHatl; = 1, M> = 1) was
sent. Furthermore, we denote B¥'(k1,k2) to be thek; codeword in the binky, wherek; € K; =
{1,2,..,2nfU)Fa [y € Ky = {1,2,..,2"F2}. Let us define the following events:

Ey = {UrQ1), U5 (k1)) ¢ T Uy, Uz), Vky € Ky} 8
Ey = {Ur(1), ") ¢ T (U, 1}). )
By = {3i#41:(U0),Y") e TULYL), i € My}, (10)
Ey = {U5(1,1),Y5") ¢ T (U2, Y1)} (11)
Es = {3k ks) # (1,1): (US (ki ko), YY) € T(Us, Ya), (kisks) € K1 x Ko}, (12)

Then by the union of events bound,

n
P€

|
v

C
=

< Y P(E). (13)
Now let us find the probability of each event,
« P (FE;)- in each bin, and in particular in bih, there is2"(/(U1;U2)+¢) codewords/y. Therefore, by
using the covering lemma, as— oo
P (E;) — 0. (14)
e P (E)- using the L.L.N., a1 — oo the probability of error,
P(E;) — 0. (15)
« P (Ej3)- by the union of events bound, the probability of the evEpt

P(E3) = Pr{di#1:(U]'G),Y")eT(U, Y1), i € My}

onk1

> PUT), Y") € TMUL, Y1)

1=2

§ 2nR1 . 27n(I(U1,Y1)76). (16)

IN

For P (E5) — 0 asn — oo, we need to choose,
R1<I(U1,Y1)76. (17)
e P (E,)- using the L.L.N., as1 — oo the probability of the evenEy,,

P(Ey) — 0. (18)
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« P (Es)- by the union of events bound, the probability of the evEpt
P(E5) = Pr {El(klka) 7é (1a 1) : (U;(kth%Yéﬂ) € Te”(U27Y2)7 (kla kQ) € ’Cl X ICQ}

< Z P((Ug (k1. k2),Y5") € T (U2, Y2))
(k1,k2)7#(1,1)
< 2n(I(U1;U2)+€) . 27LR2 . 2—‘!L(I(U2;Y2)—E). (19)

For P (Es) — 0 asn — oo, we need to choose,
Rs <I(U2,}/2)—I(U1,U2)—26. (20)

Thus, the total average probability of decoding etP) — 0 asn — oo if (R =I(U1;Y1) — ¢, Ry =
I(Uy;Y2) — I(Uy; Us) — €). The achievability of the other corner point follows by olging the code design
order. To show achievability of other points 7, we use time sharing between corner points and points
on the axes.

Thus, the probability of error, conditioned on a particdadeword being sent, goes to zero if the conditions

of the following are met:

Ry

IN

I(U17 Y1)7

Ra

IN

I(UQ;YQ)v
Ri+Re < I(UnY1)+I(Us;Ya)— I(U1;U0).

The above bound shows that the average probability of emfuch by symmetry is equal to the probability
for an individual pair of codewordén,, ms), averaged over all choices of codebooks in the random code
construction, is arbitrarily small. Hence, there existieast one codén, 2", 2722 with arbitrarily small
probability of error. To complete the proof we use time-ghguto allow any(R;, R2) in the convex hull

to be achieved. [ |
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