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Multi-user information theory 2

Lecture 6

Lecturer: Haim Permuter Scribe: Ohad Elishco

I. CAPACITY REGION OF DEGRADED BROADCAST CHANNEL

The broadcast channel is a communication channel in which there is one sender and

several receivers, as presented in Fig. 1. The broadcast channel (BC) was first introduced

by Cover [4].
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Fig. 1. Broadcast channel.

We begin with some basic definitions for the broadcast channel.

A. Definitions for Broadcast Channel

Definition 1 (Code for the BC) A broadcast channel(BC) consists of an input alphabet

X and two output alphabets,Y1 andY2, and a probability transition functionp(y1, y2|x).

The channel calledmemorylessif

p(y1,i, y2,i|x
i, yi−1

1 , yi−1
2 ) = p(y1,i, y2,i|xi). (1)
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Next we define the code for the BC and the average probability of error.

Definition 2 A ((2nR1, 2nR2), n) code for the BC consists of two sets of integers

W1 = {1, 2, . . . , 2nR1} and W2 = {1, 2, . . . , 2nR2}, called the message sets. There is

one encoding function

f : W1 ×W2 → X n,

and two decoding functions:

g1 : Y
n
1 → W1

g1 : Y
n
2 → W2.

Definition 3 (Average probability of error) We define the average probability of error

as the probability that the decoded messages are not equal tothe transmitted message.

That is, P (n)
e = Pr

(

{W1 6= Ŵ1} ∪ {W2 6= Ŵ2}
)

= Pr
(

(W1,W2) 6= (Ŵ1, Ŵ2)
)

. We

assume that(W1,W2) are distributed uniformly over2nR1 × 2nR2 .

Now we define the achievable rate pair and the capacity region.

Definition 4 (Achievable rate pair) A rate pair (R1, R2) is said to be achievable for

the BC if there exists a sequence of((2nR1 , 2nR2), n) codes withP (n)
e → 0 asn → ∞.

Definition 5 (Capacity region) The capacity region is the closure of the union of all

achievable rate pairs.

The general model has yet to be solved, therefore we discuss special cases of the BC.

The case of physically degraded BC and the case of stochastically degraded BC.

B. Degraded Broadcast Channel

Definition 6 (Physically degraded BC) A broadcast channel is said to bephysically

degradedif

p(y1, y2|x) = p(y1|x)p(y2|y1). (2)

This definition means that we have the Markov chain(Y2 − Y1 −X).
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Definition 7 (Stochastically degraded BC)A broadcast channel is said to bestochas-

tically degradedif there exists a distributionp′(y2|y1) such that

p(y2|x) =
∑

y1

p(y1|x)p
′(y2|y1). (3)

Note that it is always the case:p(y2|x) =
∑

y1
p(y1, y2|x). Hence, the stochastically

degraded BC means that there exists somep′(y2|y1) such that

P ′(y1, y2|x) = P (y1|x)P
′(y2, y1) (4)

induces the same conditional probabilityP (y1|x) and P (y2|x) of the original channel

P (y1, y2|x). Namely,P ′(yi|x) = P (yi|x) i = 1, 2. We callP ′(y1, y2|x) given in (3) the

associated phisically degraded BC.

We now show that the capacity region of the stochastically degraded BC is equal to

the associate physically degraded BC.

Lemma 1 For a stochastically degraded BC, the capacity region of thechannel defined

with the probabilityP ′(y1, y2|x) (as in (4)) that satisfies (3) is equal to the capacity region

of the stochastically degraded channel defined with the probability P (y1, y2|x).

Proof: We denoteA as the event{Ŵ1(Y
n
1 ) 6= w1} andB = {Ŵ2(Y

n
2 ) 6= w2}. Recall

thatP n
e = Pr (A ∪ B|W1 = w1,W2 = w2). Hence, by fixing(w1, w2) we fix xn(w1, w2)

and we have that the expression

Pr(A|W1 = w1,W2 = w2) = Pr(A|W1 = w1,W2 = w2, x
n(w1, w2))

= Pr(A|xn)

depends only onP (yn1 |x
n) which is equal to

∏n

i=1 = P (yi|xi) due to the memoryless

property. Similarily, we have thatPr(B) depends only onP (y2|x). By the upper

boundPr(A ∪ B|xn) ≤ Pr(A|xn) + Pr(B|xn). Moreover,min{Pr(A|xn),Pr(B|xn)} ≤

Pr(A ∪ B|xn). Therefore,Pr(A ∪ B|xn) is going to 0 if and only if Pr(A|xn) and

Pr(B|xn) are going to0. We have thatP (n)
e ≤ Pr (A|W1 = w1,W2 = w2, x

n(w1, w2)) +

Pr (B|W1 = w1,W2 = w2, x
n(w1, w2)). It is clear that the first expression depends on

P (y1|x) and the second expression depends onP (y2|x) and since forP (y1, y2|x) and
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P ′(y1, y2|x) the conditional probability is equal, i.e.P (yi|xi) = P ′(yi|xi), the capacity

is the same.

C. Capacity region of the Degraded Broadcast channel

Theorem 1 [3, ch. 15.6], [1, ch. 5],[4] The capacity region for sendingindependent

information over the degraded broadcast channelX − Y1 − Y2 is the convex hull of the

closure of all(R1, R2) satisfying

R2 ≤ I(U ; Y2), (5)

R1 ≤ I(X ; Y1|U) (6)

for some joint distributionp(u)p(x|u)p(y1, y2|x), where the additional random variable

U has cardinality bounded by|U| ≤ min{|X |, |Y1|, |Y2|}.

We provide a proof fo Theorem 1 for the physically degraded case. However, Theorem

1 holds for the stochastically degraded case as well.

Lemma 2 Theorem 1 holds for the stochastically degraded BC.

Proof: Obviously, it holds for the associated physically degradedversion of the BC

given byP ′(y1, y2|x) = P (y1|x)P
′(y2|y1) from (3). Here we show that Theorem 1 holds

for the probabilityP (y1, y2|x) of the stochastically degraded BC.

The region for the stochastically degraded BC is:

R1 ≤ Ip′(X ; Y1|U)

R2 ≤ Ip′(U ; Y2).

We should show thatI(X ; Y1|U) = Ip′(X ; Y1|U) andI(U ; Y2) = Ip′(U ; Y2)

For the phisically degraded BC the distribution isP (u)P (x|u)P (y1|x)P (y2|y1) whereas

for the stochastically degraded BC the distribution isP (u)P (x|u)P (y1|x)P
′(y2|y1). We

denotea = P (u)P (x|u)P (y1|x) and now we can write the distribution for the physically

degraded BC asa ·P (y2|y1) and the distribution for the stochasticaly degraded BC asa ·

P ′(y2|y1) Only the expressiona determine the value ofI(X ; Y1|U) andIp′(X ; Y1|U) and

therefore they are equal. We have thatI(U ; Y2) = Ip′(U ; Y2) since the expressions depends
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only on P (u, y2). We can writeP ′(u, y2) =
∑

x P
′(u, x, y2) =

∑

x P (u)P (x|u)P ′(y2|x)

andP (u, y2) =
∑

x P (u, x, y2) =
∑

x P (u)P (x|u)P (y2|x). We can choseP ′(y2|x) in a

manner that the expressions are equal.

We will now find the capacity region of the degraded broadcastchannel. Since the proof

of the achievability uses unusual tools, we begin the proof from proof of the converse.

proof of convers:

We fix a code(n, 2nR1, 2nR2) with a probability of errorP (n)
ǫ . Now consider,

nR2 = H(M2) (7)

= H(M2) +H(M2|Y
n
2 )−H(M2|Y

n
2 ) (8)

(a)

≤ I(M2; Y
n
2 ) + nǫn (9)

=

n
∑

i=1

I(M2, Y2,i|Y
i−1
2 ) + nǫn (10)

≤

n
∑

i=1

I(M2, Y
i−1
2 ; Y2,i) + nǫn (11)

(b)

≤
n
∑

i=1

I(M2, Y
i−1
2 , Y i−1

1 ; Y2,i) + nǫn (12)

=
n
∑

i=1

I(Ui; Y2,i) + nǫn. (13)

Where

• (a)- Due to Fano inequalitynǫn , nRP
(n)
ǫ + 1 ≥ H(M2|Y

n
2 ). Note that since

P
(n)
ǫ → 0 then ǫn → 0.

• (b)- Follows from definingUi = M2, Y
i−1
2 , Y i−1

1 .

Hence we have:

R2 ≤
1

n

n
∑

i=1

I(Ui; Y2,i) + ǫn (14)

= I(UQ; Y2|Q), Q ∼ U [1, 2, . . . , n]) (15)

≤ I(UQ, Q; Y2). (16)
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Now consider,

nR1 = H(M1) (17)

= H(M1|M2) (18)

= H(M1|M2)−H(M1|M2, Y
n
1 ) +H(M1|M2, Y

n
1 ) (19)

(a)

≤ I(M1; Y
n
1 |M2) + nǫn (20)

=

n
∑

i=1

I(M1; Y1,i|M2, Y
i−1
1 ) + nǫn (21)

=

n
∑

i=1

I(Xi,M1, Y1,i|M2, Y
i−1
1 ) (22)

(b)
=

n
∑

i=1

I(Xi; Y1,i|M2, Y
i−1
1 ) (23)

(c)

≤
n
∑

i=1

I(Xi; Y1,i|M2, Y
i−1
1 , Y i−1

2 ) (24)

(d)
= nI(X1; Y1|UQ, Q), (25)

where:

• (a) - By Fano inequality.

• (b) - Because(Y1,i −Xi − (M1,M2, Y
i−1
1 )) is a Markov chain.

• (c) - Because(Xi − (Y i−1
1 ,M2) − Y i−1

2 ) is a Markov chain (the proof is given at

the end of the lecture).

• (d) - Follows the definition ofUi = M2, Y
i−1
2 , Y i−1

1 and takingQ ∼ U [1, · · · , n].

Remark 1 We notice thatU −X − Y1 − Y2 sincep(y1,q|xq, uq, Q = q) = p(y1,q|xq). We

also show in Section I-D thatXi −
(

Y i−1
1 ,M2

)

− Y i−1
2 .

Remark 2 The cardinality bounds for the random variableU are derived using standard

methods from convex set theory, and won’t be dealt here.

Remark 3 (Some intuition:) As we can see the theorem above as well as the following

proof uses some unusual tools. One of those tools is the auxiliary random variableU .
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This random variable functions as a cloud center which can bedistinguished by both

receiversY1 andY2. Each cloud consists of2nR1 codewordsXn distinguishable byY1.

The worst receiver can see only the clouds, while the better one has the resolution to

estimate the specific codeword in the cloud.

Achievability:

Fix p(u) andp(x|u).

Codebook generation:Generate2nR2 independent codewords of lengthn, U(w2),

w2 ∈ {1, 2, · · · , 2nR2}, according to
∏n

i=1 p(ui). For each codewordU(w2), generate

2nR1 independent codewordsX(w1, w2) according to
∏n

i=1 p(xi|ui(w2)). Hereu(i) plays

the role of the cloud center which can be interpreted by both receivers, whilex(i, j) is

the specificjth codeword in theith cloud.

Encoding:To send the pair(W1,W2), send the corresponding codewordX(W1,W2).

Decoding:Receiver 2 determines the uniqueˆ̂W2 such that(U(
ˆ̂
W2), Y2) ∈ A

(n)
ǫ . If there

are none such or more then one such, the receiver declares an error. Receiver 1 looks for

the unique( ˆ̂
W1,

ˆ̂
W2) such that(U(

ˆ̂
W2), X(

ˆ̂
W1,

ˆ̂
W2), Y1) ∈ A

(n)
ǫ . If there is none such or

more then one such, the receiver declares an error.

Error Analysis:By the symmetry of the code generation, the error probability does not

depend on the specific codeword which was sent. Hence, we assume that(W1,W2) =

(1, 1) was sent. We have a single user channel fromU to Y2, we will be able to

decode theU codewords with a low probability of error ifR2 ≤ I(U ; Y2). We denote

E2(i) = {(Un(i), Y n
2 ) ∈ A

(n)
ǫ }. Then the error probability at receiver 2 is

P (n)
ǫ (2) =Pr

(

Ec
2(1)

⋃

(

⋃

i 6=1

E2(i)

))

(26)

≤P (Ec
2(1)) +

∑

i 6=1

P (E2(i)) (27)

(a)

≤ǫ+ 2nR22−nI(U ;Y2)−2ǫ (28)

≤2ǫ (29)

if n is large enough andR2 ≤ I(U ; Y2), where (a) follows from AEP. Similarly, for
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receiver 1, we define

E1(i) = {(Un(i), Y n
1 ) ∈ A(n)

ǫ }, (30)

E1(i, j) = {(Un(i), Xn(i, j), Y n
1 ) ∈ A(n)

ǫ }. (31)

Recall that receiver 2 determines the uniqeˆ̂W2 such that(U(
ˆ̂
W2), Y2) ∈ A

(n)
ǫ and then

receiver 1 looks for the unique( ˆ̂
W1,

ˆ̂
W2) such that(U(

ˆ̂
W2), X(

ˆ̂
W1,

ˆ̂
W2), Y1) ∈ A

(n)
ǫ .

Hence, we first established thatP (n)
ǫ (2) → 0. We can bound the probability of error as

P (n)
ǫ (1) = P

(

Ec
1(1)

⋃

Ec
1(1, 1)

⋃⋃

i 6=1

E1(i)
⋃⋃

j 6=1

E1(1, j)

)

(32)

≤ P (Ec
1(1)) + P (Ec

1(1, 1)) +
∑

i 6=1

P (E1(i)) +
∑

j 6=1

P (E1(1, j)). (33)

By the same arguments as for receiver 2, we can boundP (ẼY i) ≤ 2−n(I(U ;Y1)−3ǫ). So,

the term
∑2nR

i=2 P (Ei) goes to0 if R2 < I(U ; Y1). But, by the data-processing inequality

and due to the fact the it is degraded channel,I(U ; Y1) ≥ I(U ; Y2), and hence the

conditions of the theorem imply that the term
∑

i 6=1 P (Ei) goes to0. We can also bound

the fourth term as

P (E1j) = P ((un(1), xn(1, j), yn1 ) ∈ A(n)
ǫ ) (34)

=
∑

(U,X,Y1)∈A
(n)
ǫ

P (un(1))P (xn(1, j)|un(1))P (yn1 |u
n(1)) (35)

≤
∑

(U,X,Y1)∈A
(n)
ǫ

2−n(H(U)−ǫ)2−n(H(X|U)−ǫ)2−n(H(Y1|U)−ǫ) (36)

≤ 2n(H(U,X,Y1)+ǫ)2−n(H(U)−ǫ)2−n(H(X|U)−ǫ)2−n(H(Y1|U)−ǫ) (37)

= 2−n(I(X;Y1|U)−4ǫ). (38)

Hence ifR1 < I(X ; Y1|U), the fourth term goes to0. Thus, the probability of error is

bounded by
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P (n)
ǫ (1) ≤ ǫ+ ǫ+ 2nR22−n(I(U ;Y1)−3ǫ) + 2nR12−n(I(X;Y1|U)−4ǫ) (39)

≤ 4ǫ (40)

if n is large enough andR2 < I(U ; Y2) andR1 < (X ; Y1|U).

Alternatively, decoder 1 can work in two stages. The first stage is to decodeW2 by

finding Ŵ2 such that(Un(Ŵ2), Y
n
1 ) ∈ A

(n)
ǫ . The second stage, after decodingW2, is to

decodeW1 by finding Ŵ1 such that(Un(Ŵ2), X
n(Un(Ŵ2), Ŵ1), Y

n
1 ) ∈ A

(n)
ǫ . We can

bound the probability of error using the following observation: Pr(A ∪ B) ≤ Pr(A) +

Pr(B|Ac). Note that ifPr(Ac) = 0 it follows immediately. Else, we have that

Pr(A ∪B) = Pr(A) + Pr(B ∩Ac)

≤ Pr(A) +
Pr(B ∩Ac)

Pr(Ac)

= Pr(A) + Pr(B|Ac).

If we take the eventA to be the event{Ec
1(1)

⋃⋃

i 6=1E1(i)} and the eventB to be the

event {Ec
1(1, 1)

⋃⋃

j 6=1E1(1, j)} we have thatPr(A) → 0 when R2 ≤ I(U ; Y2) and

Pr(B|Ac) → 0 whenR1 ≤ I(X ; Y1|U). Using the mentiond observation we have that

Pr(A ∪B) → 0.

The above bounds show that we can decode the messages with total probability of

error that goes to0. With this, we complete the proof of the achievability of thecapacity

region for the degraded broadcast channel.

D. sufficient condition for verifying Markov chains

This method was first introduced in [2]. Assume a set of randomvariables

(X1, X2, · · · , XN). Without loss of generality we assume that the joint distribution has

the form

p(xN ) = f(xS1)f(xS2) · · · f(xSk
). (41)
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WhereSi is a subset of{1, 2, · · · , N} andXSi
= {Xj}j∈Si

. The following graphical

technique provides a sufficient condition for Markov relation XG1 − XG2 − XG3 where

G1,G2,G3 are disjoint subsets ofXN . The technique comprises two steps:

• Draw an undirected graph where all the random variablesXi, i ∈ {1, 2, · · · , N} are

nodes in the graph and for alli ∈ {1, 2, · · · , k} draw edges between all the nodes

XSi
.

• If all paths in the graph from a node inXG1 to a node inXG3 pass throw a node in

Xi2 then the Markov chainXG1 −XG2 −XG3 holds.

We will demonstrate it by an example.

Example 1 (Markov chain) Assume

p(x2, y2, z2) = p(x1, y2)p(y1, x2)p(z1|x1, x2)p(z2|y1), (42)

is X1 −X2 − Z2 Markov?

To verify that it is Markov, we draw all the connections between xi, yi, zi according to

the functions. For every function, we draw a line on the function’s arguments. if there is

a line connectingx1− y1− z2 and not directlyx1− z2 then it is Markov. In this example

we have such a line so it is Markov.

Now we show thatXi −
(

Y i−1
1 ,M2

)

− Y i−1
2 . Consider,

p(m1, m2, x
i, yi−1

1 , yi−1
2 ) = p(m1)p(m2)p(x

i−1|m1, m2)p(xi|m1, m2)p(y
i−1
1 |xi−1)p(yi−1

2 |yi−1
1 ).

(43)

Following the steps metioned earlier we obtain the scheme inFig. 3 and by using the

explanations above we can derive thatXi−
(

Y i−1
1 ,M2

)

−Y i−1
2 . This gives us the wanted

result.
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X1 X2

Y2 Y1

Z1 Z2

Fig. 2. Diagram that represent the Markov connections of Example 1.

M1

M2

X i−1

Xi

Y i−1
1

Y1,i

Y i−1
2

Y2,i

Fig. 3. Markov connections ofp(m1)p(m2)p(x
i−1|m1,m2)p(xi|m1,m2)p(y

i−1
1 |xi−1) from which we can derive

Xi −
(

Y i−1
1 ,M2

)

− Y i−1
2 using the steps and explanations mentioned above.


