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Multi-user information theory 2

Lecture 6

Lecturer: Haim Permuter Scribe: Ohad Elishco

|. CAPACITY REGION OF DEGRADED BROADCAST CHANNEL

The broadcast channel is a communication channel in whiefetls one sender and
several receivers, as presented in Fig. 1. The broadcasheh@C) was first introduced
by Cover [4].
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Fig. 1. Broadcast channel.

We begin with some basic definitions for the broadcast cHanne

A. Definitions for Broadcast Channel

Definition 1 (Code for the BC) A broadcast channgBC) consists of an input alphabet
X and two output alphabet3); and),, and a probability transition function(y,, y2|x).

The channel callednemorylessf

Py, Yoale’, yih us ) = (s youl @) 1)
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Next we define the code for the BC and the average probabiligrror.

Definition 2 A ((2"f1,2"%2) ) code for the BC consists of two sets of integers
Wy = {1,2,...,2"%} and W, = {1,2,...,2"%2}, called the message sets. There is

one encoding function

Wi x W, = &,

and two decoding functions:

gV =W
gliy§L—>W2.

Definition 3 (Average probability of error) We define the average probability of error
as the probability that the decoded messages are not eqtia tbansmitted message.
That is, P = Pr <{W1 # Wi u{W, # W2}> = Pr <(W1, Wa) # (W, WQ)) We

assume thatWWy, W,) are distributed uniformly ovepm# x 2n%z,
Now we define the achievable rate pair and the capacity region

Definition 4 (Achievable rate pair) A rate pair (R, R,) is said to be achievable for

the BC if there exists a sequence (@271, 2"%2) n) codes withP™ — 0 asn — oc.

Definition 5 (Capacity region) The capacity region is the closure of the union of all

achievable rate pairs.

The general model has yet to be solved, therefore we dispessas cases of the BC.

The case of physically degraded BC and the case of stocakgstilegraded BC.

B. Degraded Broadcast Channel

Definition 6 (Physically degraded BC) A broadcast channel is said to Iphysically
degradedif

p(y1, y2lz) = p(yilz)p(ylyr). 2)

This definition means that we have the Markov ch@ih — Y; — X).
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Definition 7 (Stochastically degraded BC)A broadcast channel is said to b&chas-
tically degradedif there exists a distributiop’(y-|y;) such that

plyalr) = plyle)p (yalyn)- 3)

Note that it is always the case(yq|z) = >, p(y1,2|z). Hence, the stochastically
degraded BC means that there exists s@fg|y;) such that

P'(y1,y2lz) = P(y1lz) P (y2, 1) 4)

induces the same conditional probabili(y;|z) and P(y.|z) of the original channel
P(y1,yo|z). Namely, P'(y;|z) = P(y;|x) i=1,2. We call P'(y;,y2|x) given in (3) the
associated phisically degraded BC.

We now show that the capacity region of the stochasticaltyratded BC is equal to
the associate physically degraded BC.

Lemma 1 For a stochastically degraded BC, the capacity region othannel defined
with the probabilityP’(y1, y2|x) (as in (4)) that satisfies (3) is equal to the capacity region
of the stochastically degraded channel defined with thegiitiby P(y;, ys|z).

Proof: We denoted as the evenf IV, (Y") # w,} andB = {W(Y3") # w,}. Recall
that P = Pr (AU B|W, = wy, Wy = w9). Hence, by fixing(w;, wy) we fix 2" (w;, ws)

and we have that the expression

PI‘(A|W1 = wq, WQ = ’wz) = PI'(A|W1 = wq, W2 = wg,x"(wl, UJQ))
= Pr(A|z")

depends only orP(y'|z") which is equal to[[;_, = P(v;|z;) due to the memoryless
property. Similarily, we have thaPr(B) depends only onP(y:|x). By the upper
boundPr(A U B|z™) < Pr(A|z") + Pr(B|z"). Moreover,min{Pr(A|z"), Pr(B|z™)} <
Pr(A U B|z"™). Therefore,Pr(A U B|z™) is going to0 if and only if Pr(A|z™) and
Pr(B|z") are going to). We have thatP\™ < Pr (A|W; = wy, Wa = wa, #" (wy, ws)) +

Pr (B|W; = wy, Wy = we, 2" (w1, ws)). It is clear that the first expression depends on

P(y:1]z) and the second expression dependsRin,|z) and since forP(yi, y»|z) and
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P'(y1,y2|x) the conditional probability is equal, i.€2(y;|x;) = P'(y;|x;), the capacity

is the same. [ ]

C. Capacity region of the Degraded Broadcast channel
Theorem 1 [3, ch. 15.6], [1, ch. 5],[4] The capacity region for sendimglependent
information over the degraded broadcast chamnel Y; — Y5 is the convex hull of the

closure of all(R;, R,) satisfying
Ry < I(X;11|U) (6)

for some joint distributiorp(u)p(x|u)p(y1, y=|z), where the additional random variable
U has cardinality bounded by/| < min{|X|, |V1],|)x]}.

We provide a proof fo Theorem 1 for the physically degradeskcélowever, Theorem

1 holds for the stochastically degraded case as well.
Lemma 2 Theorem 1 holds for the stochastically degraded BC.

Proof: Obviously, it holds for the associated physically degradexion of the BC
given by P'(y1, yo|z) = P(y1|z) P’ (y2|y1) from (3). Here we show that Theorem 1 holds
for the probability P(y1, y2|x) of the stochastically degraded BC.

The region for the stochastically degraded BC is:

Ry < I,(X;Y1|U)
RQ S ]p/(U;}/Q).

We should show th&tX; Y;|U) = L, (X; Y1|U) and I(U;Ys) = I, (U; Y>)

For the phisically degraded BC the distributiorAsu) P(x|u) P(y1|x) P(y2|y1) whereas
for the stochastically degraded BC the distributionPig.) P(x|u) P (y1|x) P’ (y2|y1). We
denotea = P(u)P(z|u)P(y;|z) and now we can write the distribution for the physically
degraded BC a8 P(y,|y;) and the distribution for the stochasticaly degraded BG as
P’(y2|y1) Only the expression determine the value of(X; Y, |U) and, (X;Y;|U) and

therefore they are equal. We have thdt’; ) = I,,(U; Y>) since the expressions depends
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only on P(u,y,). We can writeP’(u,yo) = > P'(u,z,y2) = Y, P(u)P(z|u)P'(y2|)
and P(u,y2) = >, P(u,x,y0) = >, P(u)P(z|u)P(yo|z). We can chose” (y,|z) in a
manner that the expressions are equal. [ |
We will now find the capacity region of the degraded broadchantnel. Since the proof
of the achievability uses unusual tools, we begin the promhfproof of the converse.
proof of convers:

We fix a code(n, 2" 2n%2) with a probability of errorP™. Now consider,

nRy = H(M,) 7)
= H(M)+ H(M|Yy') = H(Ms|Y3') (8)
(a)
< I(My; Y] + ne, 9)
= > I(My,Ya[Y3™") + ne, (10)
=1

< ) I(Mp, Y3 Yay) + ney (11)
=1

) & i

< Y I(Mp, Y3 YT Yay) + ey (12)
=1

= > I(U;Ya;) + ney. (13)
=1

Where

A

e (a)- Due to Fano inequalityie,, = nRP™ +1 > H(M,|Y3"). Note that since
P™ 0 thene, — 0.
« (b)- Follows from definingl; = My, Y7 ', Y~

Hence we have:

Ry < %;m;mm (14)
= I(UQ7Y5|Q)> QNU{LZ'"?TL]) (15)
< I(Ug Q:Ya). (16)
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Now consider,

nlky = H(Ml) (17)
= H(M;|My) (18)
= H(My| M) — H(M;| My, Y7") + H(My| M, Y7) (19)
< (M YPIM) + e, (20)
= Y I(My; V1| M, Yi™) + ey (21)
i=1

= ) I(X, My, Ya| My, YY) (22)
i=1

O S (X Vi Mo, Y (23)
=1

O S (XY M, Vi VY (24)
=1

D nI(X;Y1|Ug, Q) (25)

where:

« (a) - By Fano inequality.

« (b) - Becausg(Y;,; — X; — (M, My, Y{™1)) is a Markov chain.

o (c) - Because(X; — (Y{~!, My) — Y1) is a Markov chain (the proof is given at

the end of the lecture).

« (d) - Follows the definition ofU; = M,, Y, ', Y;{~" and takingQ ~ U[1,--- ,n].
Remark 1 We notice thaty — X —Y; — Y, sincep(yy 4|xq, ug, Q = q) = p(y1.4|7,). We
also show in Section I-D thak; — (Y{', M) — YJ .

Remark 2 The cardinality bounds for the random variableare derived using standard

methods from convex set theory, and won't be dealt here.

Remark 3 (Some intuition:) As we can see the theorem above as well as the following

proof uses some unusual tools. One of those tools is theiayxiandom variable/.
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This random variable functions as a cloud center which camlib#nguished by both
receiversY, andY,. Each cloud consists of*/* codewordsX™ distinguishable byy;.
The worst receiver can see only the clouds, while the better ltas the resolution to

estimate the specific codeword in the cloud.

Achievability:

Fix p(u) andp(z|u).
Codebook generationGenerate2"?2 independent codewords of length, U(w,),
wy € {1,2,---,2""2} according to] [}, p(u;). For each codeword/(w,), generate
2" independent codewords (w;, wy) according to[ )", p(z;|ui(w2)). Hereu(i) plays
the role of the cloud center which can be interpreted by beteivers, whilez(z, j) is
the specificjth codeword in theth cloud.
Encoding:To send the pai(iVy, W), send the corresponding codewaXd, ).
Decoding: Receiver 2 determines the uniquféz such that(U(M%),i@) e A™. If there
are none such or more then one such, the receiver declaresoanReceiver 1 looks for
the unique(W,, W) such that(U(IW,), X (Wi, Ws), ¥1) € A™). If there is none such or
more then one such, the receiver declares an error.
Error Analysis: By the symmetry of the code generation, the error probghildes not
depend on the specific codeword which was sent. Hence, wenasthat(WW;, W) =
(1,1) was sent. We have a single user channel fromo Y, we will be able to
decode the/ codewords with a low probability of error iR, < I(U;Y;). We denote
Ey(i) ={(U"(i),Yy") € AE”)}. Then the error probability at receiver 2 is

P (2) =Pr <E§<1> U <U E2<z'>> ) (26)

i#1
<P(ES(1))+ > P(Es(i)) (27)
i#1
(%)6 —I— 2nR22—nI(U;Y2)—26 (28)
<2e¢ (29)

if n is large enough and?, < I(U;Y5,), where(a) follows from AEP. Similarly, for



6-8

receiver 1, we define

Ei(i) = {(U"(i),Y]") € A}, (30)

E(i,j) = {(U"(0),X"(i,5),Y"") € A} (31)

Recall that receiver 2 determines the un[d(@ such that(U(Wg) Yg) e A™ and then
receiver 1 looks for the umqu(an,Wg) such that(U(Wg),X(Wl,Wg) V) € A™.
Hence, we first established th&" ) — 0. We can bound the probability of error as

PM(1) = P(Ef(l)UEf(l,nUUEl(z')UUa(m)) (32)

i#£1 j#1
< P(E{(1) + P(E{(1,1))+ Y _P(E\(i)) + > _ P(Ei(1,5). (33)
i#1 j#1

By the same arguments as for receiver 2, we can baviig, ;) < 2-"/(U¥1)-39) go,
the terngc P(E;) goes ta0 if Ry < I(U;Y;). But, by the data-processing inequality
and due to the fact the it is degraded chandé¢l/;Y;) > I(U;Y), and hence the
conditions of the theorem imply that the tefn,_,, P(E;) goes to0. We can also bound

the fourth term as

P(Ey) = P((u(1),2"(1,5),4}) € A™) (34)

= > P()P"(1,5)[u"(1)P(yr|u"(1)) (35)
(U,X,Y1)eA™

< Z 9—n(H(U)=€)g—n(H(X[U)=€)g—n(H(Y1|U)—€) (36)
(U.X,Y1)eA™

< 2n(H(U,X,Y1)+5)2—n(H(U)—5)2—n(H(X|U)—e)2—n(H(Y1\U)—e) (37)

— an(I(X;Yl\U)flle). (38)

Hence if Ry < I(X;Y1|U), the fourth term goes t0. Thus, the probability of error is
bounded by
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P(n)<1) < 6_'_6_'_2nR227n(I(U;Y1)736) _'_2nR12fn(I(X;Y1|U)f4e) (39)

€

< 4e (40)

if n is large enough an®, < I(U;Y2) and R, < (X;Y4|U).

Alternatively, decoder 1 can work in two stages. The firsgstas to decodél, by
finding 1, such that(U™(WW,),Y") € A" The second stage, after decodiig, is to
decodelV; by finding W; such that(U™ (W), X™(U" (W), W1),Yy) € A™. We can
bound the probability of error using the following obserwat Pr(A U B) < Pr(A) +
Pr(B|A°). Note that ifPr(A°) = 0 it follows immediately. Else, we have that

Pr(AUB) = Pr(A4)+Pr(Bn A9
Pr(B N A°)
Pr(Ae)

= Pr(A) + Pr(B|A°).

< Pr(A)+

If we take the event! to be the even{ E5(1) JU,., E1(i)} and the evenB to be the
event{E7(1,1) UU,, E1(1,4)} we have thatPr(4) — 0 when R, < I(U;Y>) and
Pr(B|A¢) — 0 when Ry < I(X;Y;|U). Using the mentiond observation we have that
Pr(AUB) — 0.

The above bounds show that we can decode the messages witlpriobability of
error that goes t0. With this, we complete the proof of the achievability of itegpacity
region for the degraded broadcast channel. [ |

D. sufficient condition for verifying Markov chains

This method was first introduced in [2]. Assume a set of randeaniables
(X1, Xo, -+, Xn). Without loss of generality we assume that the joint distiin has

the form

p(xN> = f('r31)f<x32> T f(xsk) (41)
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WhereS; is a subset of 1,2,--- , N} and X, = { X },ecs,. The following graphical
technique provides a sufficient condition for Markov réatiXy, — Xg, — Xg, where

G1, G, G5 are disjoint subsets ok . The technique comprises two steps:

. Draw an undirected graph where all the random variablgs € {1,2,--- , N} are
nodes in the graph and for alle {1,2,--- ,k} draw edges between all the nodes
Xs, -

. If all paths in the graph from a node iKg, to a node inXg, pass throw a node in
X2 then the Markov chainXg, — Xg, — Xg, holds.

We will demonstrate it by an example.

Example 1 (Markov chain) Assume

P(l’za 3/27 22) = P(«Tl, 3/2)2?(3/17 $2)P(21|5U17 «%’2)29(22‘3/1)7 (42)

is X; — Xy — Z, Markov?

To verify that it is Markov, we draw all the connections beéne:;, y;, z; according to
the functions. For every function, we draw a line on the fiorcs arguments. if there is
a line connecting:; — y; — z; and not directlyx; — z; then it is Markov. In this example

we have such a line so it is Markov.

Now we show thatX; — (Y™, M) — Y;~". Consider,

plmy,ma, @',y vy ') = p(ma)p(me)p(a'™ [ma, me)p(zilma, ma)p(yy ™ 2" )p(ys 'y ™)
(43)

Following the steps metioned earlier we obtain the schemiéign 3 and by using the

explanations above we can derive thgt— (Y;~', M,) — Y, ~'. This gives us the wanted

result.
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X1 X2

Fig. 2. Diagram that represent the Markov connections ofnipta 1.

Ya

Fig. 3. Markov connections gf(m1)p(mz)p(z~ma1, ma)p(z:|/m1, m2)p(y:~'z*~") from which we can derive

X; — (Y{7', M2) — Y, using the steps and explanations mentioned above.



