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Multi-use Information Theory 2 Nov 8th, 2010

Lecture 5

Lecturer: Haim Permuter Scribe: Avihay Shiraz

I. COORDINATION CAPACITY

A reminder: A rate distortion function for the sourée~ i.i.d. po(x), the reconstructioX and some

distortion measure : X x X — R*, is given by

R(D) = min 1(X; X), L)
p(#le): E[d(x» Xm)]<D
where
T(X") € {1,2,...,2"%} )
s % Encoder » Decoder ——» X"

Fig. 1: The basic rate distortion problem.
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Our goal in the rate distortion problem is tHﬁ{d(X",f(")] < D.

Now, let us look at another goal; say that we do not want to ohedgistortion constrain, but
rather, we want to establish coordination between the nadethe network summarized by a joint
probability distribution. For example, if the encoder sefitf X") € {1,2,...,2"%}, then we want the
decoder to do an action such that some empirical joint PM&éat the encoder and the decoder wil

be arbitrarily close to the goal PMF. This problem is callezbardination problem, as depicted in Figure 2.

Rate coordination
Let us phrase the problem described in Figure 2 in a matheahatiay:
For X ~ iid. po(z), the demand for the empirical joint PMP,»,~ (z,y) is to be arbitrarily close to

the goal PMFpy(x)p(y|z). i.e., for everye > 0, there existdVy(e) € N such thatvn > Ny(e),

[ Panyn (2,y) = po(2)p(ylz)l| v < €, 3)
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T(X™) e{1,2,...,2"}

N ii{f"po(‘r)‘» Node X » NodeY | ——» Y"

Fig. 2: Rate coordination problem. Node X is assigned the actioX™ chosen by nature according to it's PMF, and the
nodeY is producing the sequendé€™ according to the inde’(X™) and some decoding map: {1, 2,0, 2"R} —
yr.

where the TV norm is defined in the following definition.

Definition 1 (Total variation norm)
— 1 4
Ip(z,y) = az,y)rv = 3 ;ex Ip(z,y) — q(z,y)|. 4

yey

Example 1. Let X = {1,2,3}, Y ={1,2,3} and X ~ Uniform{1, 2,3}. Our goal is

lor2 if X=1
V=9 20r3 if X=2 )
3orl if X =3
whereY distributes uniformly for each choice of.
How many bits do we need to send? What is the minimal fatbat insures that we reach our goal with

probability 1?

Example 2 (Broadcast) Consider the example depicted in Figure 3. What are the (a@esR,) that
can achieve the joint type (the empirical joint distribaQP,nn.n (2, y, 2) = po(z)p(y, z|z), when the

actions at nodeX are specified by nature and distributed according(to®) = [, , po(z:)?

yn
Ry

RQ Zﬂ

Fig. 3: Broadcast rate coordination.

Notice that in the rate distortion problem, every distartio dictates a set of possible types of sequences,
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while the coordination problem dictates a specific type.(egly p(y|x) for the simple 1 sender and 1

receiver case). Recall that the joint type(af*, y™) is defined as follows
Pynyn (z,y) = lN(ﬂfayL’C"vy") - z”: Loy =a,yi=y}- (6)
n n =1
Definition 2 (A coordination code) The coordination cod€2™, n) is defined by the mappings
Encoder f: X" — {1,2,...,2"f}, (7)
Decoder g: {1,2,...,2"%} — Y™ (8)

Definition 3 (An achievable rate)A rate R is said to be achievable for a coordinatipf(z)p(y|z) if

there exists a sequence of coordination co@¥¢’, n) such that
| Pynyn (2, y) — po(@)p(y|z)||rv — 0 in probability. 9)
In other words, for every > 0 there existsy > 0 and Ny € N such that
Vn > N, Pr {||Ponyn (z,y) — po(@)p(y|z)|rv < €} >1—4. (10)
The rate coordination capacity* (po(z)p(y|z)) is the infimum of all achievable retes.

Theorem 1 (The rate coordination capacityjor the sourceX ~ ii.d. po(z) and the desired joint

distribution p(y|x) (the desired coordination goal), the rate coordinatiorecdyp is given by
R* =I(X;Y). (11)

proof of Theorem 1:
Achievability: Look at the rate distortion achievability proof.

Before proving the converse, let us look at the following pedies: For X™ and Q@ ~
Uniform{1,2,...,n}, Xg is a random variable.
Properties:

1) If all of the elements of the sequendg® are identically distributed, theX ¢, is independent of).

Proof:

plzr =a) = p(rs = a) = --- = p(zn = a) = p(zq = a|Q = q) = p(zq = a). (12)

2) If the elements of the sequent&™, Y™) are identically distributed, then

E[PXnYn (a,b)} = PXQYQ (a,b). (13)
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Proof:
E[Pxeyn(a,0)] = Y p(a",y")Penyn (a,b) (14)
xw,7yw,
@ 1 0N
= E Z p(mnay L) Z ]l{zq:a,yq:b} (15)
™,y g=1
1 n
- ﬁ Z p(x"’ yn)]]'{l‘QZ‘lqu:b} (16)

1
(:) — quyq (a, b) (17)
n e
= PQ (Q)PXQ YQ\Q(av b|‘1) (18)
qg=1
= PXQYQ (a, b), (19)

where step (a) follows from the definition of the joint empirical distribon
Pynyn(a,b) = £N(a,blz",y") = £330 Lis,—ay,—s}, and step (b) follows from
Zg;wr7ywrp(xnvyn)]l{zq:a,yq:b} = Pr{Uxmyn [(Xn = " Y" = yn) N (Xq = avK] =
b)]} - Pr{(X",Y") €X" x VX, =a,Y, = b} —Pr{X,=aY,=b} =Pxy (a,b). ®
Notice that
|Pxnyn(a,b) — po(a)p(bla)|rv — 0 in probability—- E[HPXnyn (x,y) —po(x)p(y|x)||Tv} = 0.
(20)

This follows from the fact that ifX,, — 0 in probability andX, is bounded, thef[X,,] — 0 asn — oo.

Proof: If X,, — 0 in probability, thenve’ > 0 3Ny € N, s.t.n > No = Pr{|X,| > €} < ¢,

hence,
E[X.]| =] 2P(X, = x)| (21)
TeEX
< € Pr{|X,| <e’}+m€a)>(<|ac|-Pr{|Xn| > €'} (22)
<€ + ¢ - max|z| (23)
reEX
o
=e(1+ max |z|) (24)
=€, (25)
for ¢ = trmme—r7a @nd sincanax,ex |z| < oo, then¥e >0, 3Ny € N, s.t.n > No = [E[X,]| <e
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[ ]
Example 3 (If X, is not bounded:)Let us consider the following RV
0 wp.1-1
Xn - " ) (26)
n w.p. -

then, X,, — 0 in probability, butlim,, . E[X,,] = 111!

We will now prove the converse for the coordination capagitgblem. Converse: Fix a (2"%, n)

coordination code, Now, consider

nR > H(T) 27)
< rxmym) (28)
= Z I(X; Y™ XT) (29)

1=1
® Z I(Xi; Y™, XY (30)
i=1
> S IV 31)
1=1
=nl(Xq;Yql|Q) (32)
2 ni(Xq:Ye,Q) (33)
> nl(Xq;Yo), (34)

and since(Xq,Yg) ~ po(x)p(ylx), we getl(Xqg;Yy) = I(X;Y), and this completes the proof of the
converse. Stefa) follows from the data processing inequality, stgp follows from the fact thatX; is

independent of{*~! and step(c) follows from the fact thatX(, is independent of). [

Let us look at two examples of rate coordination capacity.

Example 4 (Broadcast) Consider a rate-distortion problem as illustrated in Fegdr

The goal is

E[d(X,Y)] < Dy, (35)

E[d(X,Z)] < Dz. (36)
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Yn
R

XTL

Ry VAL

Fig. 4: Broadcast rate coordination.

The rate region that corresponds with this problem is

Ry > I(X:Y)

(37)
Ry > I(X;7)

over all distributions of the formp(x)p(y|x)p(z|x).

Let us now consider a new goal: we want the empirical distidiouto be equal tgq(x)p(y, z|x). i.e.,

Pynynon (2,y,2) = po(z)p(y, z|x). We get a rate coordination problem, and the inner boRpgl;, and
the outer bound,, ..+ [1, Theorem 7] are brought by

Rpo,in = R2 > I(X, U, Z) , (38)
Ri+ Ry > I(X;U,Y) + I(X;U, Z) + I(Y; Z|X,U)
for some joint probability mass functiom (x)p(y, z|x)p(ul|x, y, z), where|U| is finite.
Ry > I(X3Y)
Rpo,out = R2 > I(X, Z) y (39)
Ri+ Ry > I(X;Y,2)
for some joint probability mass functiom (x)p(y, z|x).

Note that the RVU in the inner bound formulas is introduced in order to coteethe codebooks fay™

and for Z™. We can considet/ to be a common message to both nodes, and each node getstioraddi

a private message.

Xm R, Yy
o——— >0 >0

Fig. 5: Cascade rate coordination.
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Example 5 (Cascade) The rate region for the rate distortion problem illustraied-igure 5 is

Ri>I(X;:2)+ I(X;Y|Z
12 I(G2) +10GY12) o)
Ry > I(X; Z)
Solving this problem with the coordination gaal(z)p(y, z|z), will yield the result
Rpo = ; (41)
Ry > I(X; Z)

for some joint PMFpg(2)p(y, z|x).

Achievability: First, let us define the typical set. For a given> 0 and a given distribution

Pxyz(x,y,2z) = po(x)p(y, z|2), defineT§”)(XYZ) in the following way:

TE(TL)(XYZ) — T€(7L)(PXYZ) — {(m'rL,yn’Zn) c X" % yn « Z" .

Ppnynon (2, y,2) — po(2)p(y, 2|x)

€
———for all X Z. 42
<|X||Ji||Z| orall (z,y,2) € X x ) x } (42)

Let X" be a drawni.i.d. ~ po(z). Generate at randogf2 sequenceg™ distributedi.i.d. according to
p(z) and index themz" (j) for j € {1,2,...,2"%2}. Generate at randoaf™: sequence¥ ™ distributed
i.i.d. according top(y|2) and index them¥™ (i) for i € {1,2,...,2"f1}.

Define the mappings

foo X7 {12,200 [1,2,.. onti2) (43)
gn: {1,2,...,200 ) o (44)
hot {1,2,...,2"% ) s 27, (45)

Node X: Given 2™, first, look for an index;j such thatz"(j) € T.")(Pxz|a"). After obtaining, look
for an index:i such thatY™ (i) € Tg(n)(nyzll‘n,Zn(j)). If such (i, ) are found, sendi, j), to Node Y,
otherwise send0, 0).

Node Y Given (i, j), reconstruct™ = g, (i, j) and send;j to node Z.

Node Z Given j, reconstructZ™ = h,,(j).

Analysis of an error:

Ei(z") = {ﬂj e{1,2,....2" ) st Z"(j) € TE(")(PXZ|ac")} (46)

Ba(z™, 2"(j)) = {jﬂi e{1,2,....2"F ) st. Y"(i)e TE(")(PXyz|x”,z”(j))} (47)
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The probability for an error is bounded W™ < Pr{E;} + Pr{Es}.

Pr{E1(z")} < 1'_[ Pr{Z"(j) ¢ T!" (Pxz|z")} (48)

<exp{ - on(Ra—1(X:2)) L (49)

The last term tends t6 asn — oo for Ry > I(X; Z).

As for E,, becaus&™” is generated given”(j),
Pr{Ey(a", 2"(j)} < [[Pr{Y" (@) ¢ T (Pxvzla", 2" ()} (50)
<exp{ - 2n(R’17[(X;Y|Z)) L (51)

The last term tends t6 asn — oo for R} > I(X;Y|Z).
Now since we want to sent to Node Y the pair of indigésj), we needR; to be Ry = R} + Ry =
I(X;Y|Z)+1(X;Z)=1(X,Y, Z). This completes the proof of the achievability. [ |

Converse:  For any given coordination cod@’®, 2"%2 n),

nRy > I(X™; Z™) (52)
= I(X; 27X (53)
i=1
WN (X2 XY (54)
=1
>3 1(x.2) (55)
i=1
= nl(Xq: ZolQ) (56)
Y n(Xo; Zo,Q) (57)
> nl(Xq; Zg), (58)

and since for al(Xq, Zq) ~ >, po(z)p(y, 2[x) = po(2)p(2|z), we get thatl (Xq; Zg) = I(X; Z). Step
(a) follows from the fact thatX; is independent of{*~!, and step(b) follows from the fact thatX, is
independent of).

And in the same way, we get that
nRy = H(fn(X")) (59)
> I(X™ Y™, Z") (60)

> 1(Xq; Yo, Zq), (61)
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and again(Xg, Yo, Zg) ~ po(z)p(y, z|z), and therefore] (Xq; Yo, Zg) = I(X;Y, Z). This completes
the proof of the converse. ]
Note that the rate region for both the rate distortion probknd the rate coordination problem is the

same (it is exactly the cut-set bound!).
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