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Multi-use Information Theory 2 Nov 8th, 2010

Lecture 5

Lecturer: Haim Permuter Scribe: Avihay Shirazi

I. COORDINATION CAPACITY

A reminder: A rate distortion function for the sourceX ∼ i.i.d. p0(x), the reconstruction̂X and some

distortion measured : X × X̂ → R+, is given by

R(D) = min
p(x̂|x): E

[
d(Xn,X̂n)

]
≤D

I(X ; X̂), (1)

where

Xn

∼ i.i.d. p0(x)
X̂n

Encoder Decoder
T (Xn) ∈

{
1, 2, . . . , 2nR

}

Fig. 1: The basic rate distortion problem.

d(xn, x̂n) =
1

n

n∑

i=1

d(xi, x̂i). (2)

Our goal in the rate distortion problem is thatE
[
d(Xn, X̂n)

]
≤ D.

Now, let us look at another goal; say that we do not want to obeya distortion constrain, but

rather, we want to establish coordination between the nodesof the network summarized by a joint

probability distribution. For example, if the encoder sends T (Xn) ∈
{
1, 2, . . . , 2nR

}
, then we want the

decoder to do an action such that some empirical joint PMF between the encoder and the decoder wil

be arbitrarily close to the goal PMF. This problem is called acoordination problem, as depicted in Figure 2.

Rate coordination

Let us phrase the problem described in Figure 2 in a mathematical way:

For X ∼ i.i.d. p0(x), the demand for the empirical joint PMFPxnyn(x, y) is to be arbitrarily close to

the goal PMFp0(x)p(y|x). i.e., for everyǫ > 0, there existsN0(ǫ) ∈ N such that∀n > N0(ǫ),

‖Pxnyn(x, y)− p0(x)p(y|x)‖TV < ǫ, (3)
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Xn

∼ i.i.d. p0(x)
Y n

Node X Node Y
T (Xn) ∈

{
1, 2, . . . , 2nR

}

Fig. 2: Rate coordination problem. NodeX is assigned the actionXn chosen by nature according to it’s PMF, and the
nodeY is producing the sequenceY n according to the indexT (Xn) and some decoding mapg :

{

1, 2, . . . , 2nR
}

→

Y
n.

where the TV norm is defined in the following definition.

Definition 1 (Total variation norm).

‖p(x, y)− q(x, y)‖TV =
1

2

∑

x∈X
y∈Y

|p(x, y)− q(x, y)|. (4)

Example 1. Let X = {1, 2, 3}, Y = {1, 2, 3} andX ∼ Uniform{1, 2, 3}. Our goal is

Y =







1 or 2 if X = 1

2 or 3 if X = 2

3 or 1 if X = 3

(5)

whereY distributes uniformly for each choice ofX .

How many bits do we need to send? What is the minimal rateR that insures that we reach our goal with

probability 1?

Example 2 (Broadcast). Consider the example depicted in Figure 3. What are the rates(R1, R2) that

can achieve the joint type (the empirical joint distribution) Pxnynzn(x, y, z) = p0(x)p(y, z|x), when the

actions at nodeX are specified by nature and distributed according top(xn) =
∏n

i=1 p0(xi)?

Xn

Y n

Zn

R1

R2

Fig. 3: Broadcast rate coordination.

Notice that in the rate distortion problem, every distortionD dictates a set of possible types of sequences,



5-3

while the coordination problem dictates a specific type (e.g., only p(y|x) for the simple 1 sender and 1

receiver case). Recall that the joint type of(xn, yn) is defined as follows

Pxnyn(x, y) =
1

n
N(x, y|xn, yn) =

1

n

n∑

i=1

1{xi=x,yi=y}. (6)

Definition 2 (A coordination code). The coordination code(2nR, n) is defined by the mappings

Encoder f : Xn −→
{
1, 2, . . . , 2nR

}
, (7)

Decoder g :
{
1, 2, . . . , 2nR

}
−→ Yn. (8)

Definition 3 (An achievable rate). A rate R is said to be achievable for a coordinationp0(x)p(y|x) if

there exists a sequence of coordination codes(2nR, n) such that

‖Pxnyn(x, y)− p0(x)p(y|x)‖TV → 0 in probability. (9)

In other words, for everyǫ > 0 there existsδ > 0 andN0 ∈ N such that

∀n > N0, Pr
{
‖Pxnyn(x, y)− p0(x)p(y|x)‖TV < ǫ

}
≥ 1− δ. (10)

The rate coordination capacityR∗
(
p0(x)p(y|x)

)
is the infimum of all achievable retes.

Theorem 1 (The rate coordination capacity). For the sourceX ∼ i.i.d. p0(x) and the desired joint

distributionp(y|x) (the desired coordination goal), the rate coordination capacity is given by

R∗ = I(X ;Y ). (11)

proof of Theorem 1:

Achievability: Look at the rate distortion achievability proof.

Before proving the converse, let us look at the following properties: For Xn and Q ∼

Uniform{1, 2, . . . , n}, XQ is a random variable.

Properties:

1) If all of the elements of the sequenceXn are identically distributed, thenXQ is independent ofQ.

Proof:

p(x1 = a) = p(x2 = a) = · · · = p(xn = a) = p(xq = a|Q = q) = p(xQ = a). (12)

2) If the elements of the sequence(Xn, Y n) are identically distributed, then

E
[
PXnY n(a, b)

]
= PXQYQ

(a, b). (13)
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Proof:

E
[
PXnY n(a, b)

]
=

∑

xn,yn

p(xn, yn)Pxnyn(a, b) (14)

(a)
=

1

n

∑

xn,yn

p(xn, yn)
n∑

q=1

1{xq=a,yq=b} (15)

=
1

n

n∑

q=1

∑

xn,yn

p(xn, yn)1{xq=a,yq=b}

︸ ︷︷ ︸

PXqYq (a,b) - PMF, not type!

(16)

(b)
=

1

n

n∑

q=1

PXqYq
(a, b) (17)

=
n∑

q=1

PQ(q)PXQYQ|Q(a, b|q) (18)

= PXQYQ
(a, b), (19)

where step (a) follows from the definition of the joint empirical distribution

Pxnyn(a, b) = 1
n
N(a, b|xn, yn) = 1

n

∑n

q=1 1{xq=a,yq=b}, and step (b) follows from
∑

xn,yn p(xn, yn)1{xq=a,yq=b} = Pr

{
⋃

xn,yn

[
(Xn = xn, Y n = yn) ∩ (Xq = a, Yq =

b)
]
}

= Pr
{

(Xn, Y n) ∈ Xn × Yn|Xq = a, Yq = b
}

= Pr
{
Xq = a, Yq = b

}
= PXqYq

(a, b).

Notice that

‖PXnY n(a, b)− p0(a)p(b|a)‖TV → 0 in probability=⇒ E
[
‖PXnY n(x, y)− p0(x)p(y|x)‖TV

]
−→
n→∞

0.

(20)

This follows from the fact that ifXn → 0 in probability andXn is bounded, thenE
[
Xn

]
→ 0 asn → ∞.

Proof: If Xn → 0 in probability, then∀ǫ′ > 0 ∃N0 ∈ N, s.t.n > N0 ⇒ Pr
{
|Xn| > ǫ′

}
< ǫ′,

hence,

∣
∣E
[
Xn

]∣
∣ =

∣
∣
∑

x∈X

xP (Xn = x)
∣
∣ (21)

≤ ǫ′ Pr
{
|Xn| < ǫ′

}
+max

x∈X
|x| · Pr

{
|Xn| ≥ ǫ′

}
(22)

≤ ǫ′ + ǫ′ ·max
x∈X

|x| (23)

= ǫ′
(
1 + max

x∈X
|x|

)
(24)

= ǫ, (25)

for ǫ′ = ǫ
1+maxx∈X |x| , and sincemaxx∈X |x| < ∞, then,∀ǫ > 0, ∃N0 ∈ N, s.t.n > N0 ⇒

∣
∣E
[
Xn

]
| < ǫ.
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Example 3 (If Xn is not bounded:). Let us consider the following RV

Xn =







0 w.p. 1− 1
n

n w.p. 1
n

, (26)

then,Xn → 0 in probability, butlimn→∞ E
[
Xn

]
= 1!!!

We will now prove the converse for the coordination capacityproblem. Converse: Fix a (2nR, n)

coordination code, Now, consider

nR ≥ H(T ) (27)

(a)

≥ I(Xn;Y n) (28)

=
n∑

i=1

I(Xi;Y
n|X i−1) (29)

(b)
=

n∑

i=1

I(Xi;Y
n, X i−1) (30)

≥

n∑

i=1

I(Xi;Yi) (31)

= nI(XQ;YQ|Q) (32)

(c)
= nI(XQ;YQ, Q) (33)

≥ nI(XQ;YQ), (34)

and since(XQ, YQ) ∼ p0(x)p(y|x), we getI(XQ;YQ) = I(X ;Y ), and this completes the proof of the

converse. Step(a) follows from the data processing inequality, step(b) follows from the fact thatXi is

independent ofX i−1 and step(c) follows from the fact thatXQ is independent ofQ. �

Let us look at two examples of rate coordination capacity.

Example 4 (Broadcast). Consider a rate-distortion problem as illustrated in Figure 4,

The goal is

E
[
d(X,Y )

]
≤ DY , (35)

E
[
d(X,Z)

]
≤ DZ . (36)
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Xn

Y n

Zn

R1

R2

Fig. 4: Broadcast rate coordination.

The rate region that corresponds with this problem is






R1 ≥ I(X ;Y )

R2 ≥ I(X ;Z)
, (37)

over all distributions of the formp0(x)p(y|x)p(z|x).

Let us now consider a new goal: we want the empirical distribution to be equal top0(x)p(y, z|x). i.e.,

Pxnynzn(x, y, z) ≈ p0(x)p(y, z|x). We get a rate coordination problem, and the inner boundRp0,in and

the outer boundRp0,out [1, Theorem 7] are brought by

Rp0,in =







R1 ≥ I(X ;U, Y )

R2 ≥ I(X ;U,Z)

R1 +R2 ≥ I(X ;U, Y ) + I(X ;U,Z) + I(Y ;Z|X,U)

, (38)

for some joint probability mass functionp0(x)p(y, z|x)p(u|x, y, z), where|U | is finite.

Rp0,out =







R1 ≥ I(X ;Y )

R2 ≥ I(X ;Z)

R1 +R2 ≥ I(X ;Y, Z)

, (39)

for some joint probability mass functionp0(x)p(y, z|x).

Note that the RVU in the inner bound formulas is introduced in order to correlate the codebooks forY n

and forZn. We can considerU to be a common message to both nodes, and each node gets in addition

a private message.

Xn Y n Zn
R1 R2

Fig. 5: Cascade rate coordination.
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Example 5 (Cascade). The rate region for the rate distortion problem illustratedin Figure 5 is






R1 ≥ I(X ;Z) + I(X ;Y |Z)

R2 ≥ I(X ;Z)
, (40)

Solving this problem with the coordination goalp0(x)p(y, z|x), will yield the result

Rp0
=







R1 ≥ I(X ;Y, Z)

R2 ≥ I(X ;Z)
, (41)

for some joint PMFp0(x)p(y, z|x).

Achievability: First, let us define the typical set. For a givenǫ > 0 and a given distribution

PXY Z(x, y, z) = p0(x)p(y, z|x), defineT (n)
ǫ (XY Z) in the following way:

T (n)
ǫ (XY Z) = T (n)

ǫ (PXY Z) =
{

(xn, yn, zn) ∈ Xn × Yn ×Zn :
∣
∣
∣Pxnynzn(x, y, z)− p0(x)p(y, z|x)

∣
∣
∣

<
ǫ

|X ||Y||Z|
for all (x, y, z) ∈ X × Y × Z

}

. (42)

Let Xn be a drawni.i.d. ∼ p0(x). Generate at random2nR2 sequencesZn distributed i.i.d. according to

p(z) and index themZn(j) for j ∈
{
1, 2, . . . , 2nR2

}
. Generate at random2nR

′

1 sequencesY n distributed

i.i.d. according top(y|z) and index themY n(i) for i ∈
{
1, 2, . . . , 2nR

′

1

}
.

Define the mappings

fn : Xn 7→
{
1, 2, . . . , 2nR

′

1

}
×
{
1, 2, . . . , 2nR2

}
(43)

gn :
{
1, 2, . . . , 2nR1

}
7→ Yn (44)

hn :
{
1, 2, . . . , 2nR2

}
7→ Zn. (45)

Node X: Given xn, first, look for an indexj such thatZn(j) ∈ T
(n)
ǫ (PXZ |x

n). After obtainingj, look

for an indexi such thatY n(i) ∈ T
(n)
ǫ (PXY Z |x

n, zn(j)). If such (i, j) are found, send(i, j), to Node Y,

otherwise send(0, 0).

Node Y Given (i, j), reconstructY n = gn(i, j) and sendj to node Z.

Node Z Given j, reconstructZn = hn(j).

Analysis of an error:

E1(x
n) =

{

∄j ∈
{
1, 2, . . . , 2nR2

}
s.t. Zn(j) ∈ T (n)

ǫ (PXZ |x
n)
}

(46)

E2(x
n, zn(j)) =

{

∄i ∈
{
1, 2, . . . , 2nR

′

1

}
s.t. Y n(i) ∈ T (n)

ǫ (PXY Z |x
n, zn(j))

}

(47)
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The probability for an error is bounded byP (n)
e ≤ Pr{E1}+ Pr{E2}.

Pr{E1(x
n)} ≤

∏

j

Pr
{
Zn(j) /∈ T (n)

ǫ (PXZ |x
n)
}

(48)

≤ exp
{
− 2n

(
R2−I(X;Z)

)
}
. (49)

The last term tends to0 asn → ∞ for R2 > I(X ;Z).

As for E2, becauseY n is generated givenzn(j),

Pr{E2(x
n, zn(j))} ≤

∏

i

Pr
{
Y n(i) /∈ T (n)

ǫ (PXY Z |x
n, zn(j))

}
(50)

≤ exp
{
− 2n

(
R′

1
−I(X;Y |Z)

)
}
. (51)

The last term tends to0 asn → ∞ for R′
1 > I(X ;Y |Z).

Now since we want to sent to Node Y the pair of indices(i, j), we needR1 to beR1 = R′
1 + R2 =

I(X ;Y |Z) + I(X ;Z) = I(X ;Y, Z). This completes the proof of the achievability.

Converse: For any given coordination code(2R1 , 2nR2 , n),

nR2 ≥ I(Xn;Zn) (52)

=
n∑

i=1

I(Xi;Z
n|X i−1) (53)

(a)
=

n∑

i=1

I(Xi;Z
n, X i−1) (54)

≥

n∑

i=1

I(X;Zi) (55)

= nI(XQ;ZQ|Q) (56)

(b)
= nI(XQ;ZQ, Q) (57)

≥ nI(XQ;ZQ), (58)

and since for all(XQ, ZQ) ∼
∑

y p0(x)p(y, z|x) = p0(x)p(z|x), we get thatI(XQ;ZQ) = I(X ;Z). Step

(a) follows from the fact thatXi is independent ofX i−1, and step(b) follows from the fact thatXQ is

independent ofQ.

And in the same way, we get that

nR1 = H(fn(X
n)) (59)

≥ I(Xn;Y n, Zn) (60)

≥ I(XQ;YQ, ZQ), (61)
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and again,(XQ, YQ, ZQ) ∼ p0(x)p(y, z|x), and therefore,I(XQ;YQ, ZQ) = I(X ;Y, Z). This completes

the proof of the converse.

Note that the rate region for both the rate distortion problem and the rate coordination problem is the

same (it is exactly the cut-set bound!).
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