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Multi-use Information Theory 2 December 27th, 2010

Lecture 11

Lecturer: Haim Permuter Scribe: Iddo Naiss

I. RELAY WITH PARTIAL DECODE& FORWARD

Here, we give an achievability proof for the following region.

Theorem 1 For a relay channel, the probability of error goes to zero if

R ≤ max
p(x,x1,u)

{min I(X,X1;Y ), I(U ;Y1|X1) + I(X;Y |X1, U)}. (1)

Proof: In a similar way to the proof given in previous class, we again divide the message of length N to

B blocks of length n, and take B and n to infinity. Now, we divide each message Mb to two messages,

(M ′
b, M ′′

b ). In that case, M ′
b ∈ {1, 2, ..., 2nR′} and M ′′

b ∈ {1, 2, ..., 2nR′′} s.t. R′ +R′′ = R.

A. Code design

• Relay: Generate 2nR
′

codewords- xn
1 (m

′
b−1), where xn

1 ∼ p(x1) i.i.d.

• Encoder:

– For every m′
b−1 ∈ {1, 2, ..., 2nR′}, generate 2nR

′
codewords- un(m′

b−1,m
′
b), where un ∼ p(u|x1)

i.i.d.

– Then, for every (m′
b,m

′
b−1) ∈ {1, 2, ..., 2nR′} × {1, 2, ..., 2nR′}, generate 2nR

′′
codewords-

xn(m′
b−1,m

′
b,m

′′
b ), where xn ∼ p(x|u, x1) i.i.d.

B. Coding scheme

In block b:

• Encoders.

– Relay: Given m′
b−1 from previous block, the output of the relay is xn

1 (m
′
b−1)

– Transmitter: First, given m′
b−1,m

′
b, consider un(m′

b−1,m
′
b). Then, given m′′

b as well, the output

of the encoder is xn(un(m′
b−1,m

′
b),m

′′
b ).

• Decoder.

– Relay: At the end of block b, given m̂′
b−1, looks for m̂′

b s.t.

(
xn
1 (m̂

′
b−1), u

n(m̂′
b−1, m̂

′
b), y

n
1

)
∈ Tn

ϵ (X1, U, Y1). (2)
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– Receiver: At the end of block b, given m̂′
b, looks for m̂′′

b and m̂′
b−1 s.t.

(
xn(m̂′

b−1, m̂
′
b, m̂

′′
b ), xn

1 (m̂
′
b−1), un(m̂′

b−1, m̂
′
b), yn

)
∈ Tn

ϵ (X,X1, U, Y ). (3)

C. Error analysis:

Error sets: Without loss of generality, assume that the message sent was (m′′
b , m′

b, m′
b−1) = (1, 1, 1)

• ERe,0: The sequence un(m̂′
b−1 = 1, m̂′

b = 1) does not satisfy (2).

• ERe,1: There exists j ̸= 1 for which the sequence un(m̂′
b−1 = j, m̂′

b = 1) satisfy (2).

• EDe,0: The sequences
(
xn(m̂′

b−1 = 1, m̂′
b = 1, m̂′′

b = 1), un(m̂′
b−1 = 1, m̂′

b = 1)
)

do not satisfy(3).

• EDe: There exists (k, j) ̸= (1, 1) for which the sequences(
xn(m̂′

b−1 = j, m̂′
b = 1, m̂′′

b = k), un(m̂′
b−1 = j, m̂′

b)
)

satisfy (3). This part is divided to three

cases.

1) EDe,1: The output of the decoder is: m̂′′
b ̸= 1, m̂′

b−1 = 1.

2) EDe,1: The output of the decoder is: m̂′′
b = 1, m̂′

b−1 ̸= 1.

3) EDe,1: The output of the decoder is: m̂′′
b ̸= 1, m̂′

b−1 ̸= 1.

Probability of error: In the probability analysis we represent the message m′
b−1 by a symbol j, and m′′

b

by k.

• ERe,0: The probability of ERe,0 goes to zero due to the law of large numbers.

• ERe,1: In that case, the relay did not decode m′
b well.

p(ERe,1) = p{∃j ∈ {2, 3, ..., 2nR
′
} s.t. (xn

1 (1), u
n(1, j), yn1 ) ∈ Tn

ϵ (X1, U, Y1)}

≤
2nR′∑
j=2

p{(xn
1 (1), u

n(1, j), yn1 ) ∈ Tn
ϵ (X1, U, Y1)}

≤
2nR′∑
j=2

2−n(I(U ;Y1|X1)−ϵ)

≤ 2n(R
′−I(U ;Y1|X1)+ϵ).

This probability goes to zero if

R′ ≤ I(U ;Y1|X1). (4)

• EDe,0: The probability of EDe,0 goes to zero due to the law of large numbers.

• EDe: We fully analyze EDe,i for every i = 1, 2, 3.

1) EDe,1: In that case, the decoder did not decode m′′
b well.

p(EDe,1) = p{∃k ∈ {2, 3, ..., 2nR
′′
} s.t. (xn(1, 1, k), xn

1 (1), un(1, 1), yn) ∈ Tn
ϵ (X,X1, U, Y )}
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≤
2nR′′∑
k=2

p{(xn(1, 1, k), xn
1 (1), un(1, 1), yn) ∈ T (X,X1, U, Y )}

≤
2nR′′∑
k=2

2−n(I(X;Y |U,X1)−ϵ)

≤ 2n(R
′′−I(X;Y |U,X1)+ϵ).

Thus, the probability goes to zero if

R′′ ≤ I(X;Y |U,X1). (5)

2) EDe,2: In that case, the decoder did not decode m′
b−1 well.

p(EDe,2) = p{∃j ∈ {2, 3, ..., 2nR
′
} s.t. (xn(j, 1, 1), xn

1 (j), un(j, 1), yn) ∈ Tn
ϵ (X,X1, U, Y )}

≤
2nR′∑
j=2

p{(xn(j, 1, 1), xn
1 (j), un(j, 1), yn) ∈ T (X,X1, U, Y )}

≤
2nR′∑
j=2

2−n(I(X,X1,U ;Y )−ϵ)

≤ 2n(R
′−I(X,X1,U ;Y ))+ϵ).

Thus, the probability p(EDe,2) goes to zero if

R′ ≤ I(X,X1, U ;Y ). (6)

3) EDe,3: In that case, the decoder did not decode m′′
b , m′

b−1 well.

p(EDe,3) = p{∃k, j ∈ {2, 3, ..., 2nR
′′
} × {2, 3, ..., 2nR

′
} s.t.

(xn(j, 1, k), xn
1 (j), un(j, 1), yn) ∈ Tn

ϵ (X,X1, U, Y )}

≤
2nR′′∑
k=2

2nR′∑
j=2

p{(xn(j, 1, k), xn
1 (j), un(j, 1), yn) ∈ T (X,X1, U, Y )}

≤
2nR′′∑
k=2

2nR′∑
j=2

2−n(I(X,X1,U ;Y )−ϵ)

≤ 2n(R
′+R′′−I(X,X1,U ;Y ))+ϵ).

Thus, the probability p(EDe,3) goes to zero if

R′ +R′′ ≤ I(X,X1, U ;Y ). (7)



1-4

First, Note that in order for this backwards decoding to work, we must always send m′
B = 1. This

consideration does not effect the rate because the number of blocks B goes to infinity. Second, Note that

p(y|x, x1, u) = p(y|x, x1) due to the definition of the channel; hence I(X,X1, U ;Y ) = I(X,X1;Y ).

Also note that condition (6) is included in condition (7). Now, we summarize. Using Fourier-Motzkin

elimination, equations (4), (5), and R = R′ +R′′, will reduce to

R ≤ I(U ;Y1|X1) + I(X;Y |X1, U). (8)

Furthermore, equations (7) and R = R′ +R′′ will leave us with

R ≤ I(X,X1;Y ). (9)

Hence, we showed that if a rate R satisfies (1), the probability of error goes to zero, and the theorem is

proven.

Let us mention a few remarks.

Remark 1 The division of each mb to (m′
b, m′′

b ) depends on the relay channel. The more the relay can

send to the receiver, the bigger R′ is.

Remark 2 In the previous lecture we gave an achievable rate for the relay channel in a different way,

without dividing the message mb. As a matter of fact, the coding scheme is the same, except that there

we used R′′ = 0, and hence U = X . If we apply the result here for U = X , then I(X;Y |X1, X) = 0

and we have the following achievable rate:

R ≤ max
p(x,x1)

{min I(X,X1;Y ), I(X;Y1|X1)}.

This bound is the same as given in the previous lecture. Note that this bound was shown by Cover and

El Gamal [1, Theorem 1] to be the capacity of the relay channel, where the relay channel is physically

degraded, i.e.,

p(y, y1|x, x1) = p(y1|x, x1)p(y|y1, x1).

They used a ’decode and forward’ method, instead of the partial one, as we can see when R′′ = 0.

Remark 3 Another simple case is when the relay can send only little information to the decoder. In that

case we don’t want to use it at all, i.e., R′ = 0 and U = X1 = ∅. Therefore, we are left with one constraint,

which is

C ≥ max
p(x)

I(X;Y ).

Not surprisingly, this is what we would expect if we take the relay out of the model.
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Remark 4 The ’partial decode and forward’ method was used in [1, Theorem 7], where the model is more

complex. If the relay generates some Ŷ1, and an auxiliary r.v. V generates the input X1 of the channel,

then an achievable rate is

R0 = maxmin{I(X;Y, Ŷ1|X1, U) + I(U ;Y1|X1;V ), I(X,X1;Y )− I(Ŷ1;Y1|X1, X, U, Y )}.

Setting Ŷ1 = ∅, V = ∅, we are left with the expression in (1). This was mentioned by El Gamal and Aref

[2] later on.
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