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Lecture 11

Lecturer: Haim Permuter Scribe: Iddo Naiss

I. RELAY WITH PARTIAL DECODE& FORWARD
Here, we give an achievability proof for the following region.

Theorem 1 For a relay channel, the probability of error goes to zero if

R < max {minI(X,X;Y), I(U;Y1|X1) +I(X;Y|X1,0)}. (D)

p(x,@1,u)
Proof: In a similar way to the proof given in previous class, we again divide the message of length N to
B blocks of length n, and take B and n to infinity. Now, we divide each message M) to two messages,

(M, M}"). In that case, M} € {1,2,...,2"%} and M}’ € {1,2,...,2"""} st. R + R” = R.

A. Code design

« Relay: Generate 2"%" codewords- 7 (mj,_,), where & ~ p(x;) i.id.
« Encoder:
- Forevery mj,_, € {1,2,...,2"F'}, generate 2"% codewords- u™(mj,_,,m}), where u™ ~ p(ulz;)
ii.d.
— Then, for every (mj,m} ;) € {1,2,..,2"%} x {1,2,...,2"%}, generate 2"%" codewords-

"™ (my_y,mp, my), where 2" ~ p(z|u, 1) ii.d.

B. Coding scheme

In block b:
o Encoders.
- Relay: Given my,_, from previous block, the output of the relay is 7 (mj_,)
- Transmitter: First, given m;_,, mj, consider u"(mj,_,,m;). Then, given m; as well, the output
of the encoder is =" (u™(mj_,,m}), my).
o Decoder.

- Relay: At the end of block b, given 17, looks for 7, s.t.

(x?(mgfl)vun(m;)fhm;))’y?) € Ten(le U’ Yl)' (2)



- Receiver: At the end of block b, given 77, looks for /1y and my_, s.t.

(xn(m;)flv m;ﬂ mg)’ lﬂlL(m;)fl)v un<m;’717 mg)’ yn) € Ten(Xv X1, U, Y) (3)
C. Error analysis:
Error sets: Without loss of generality, assume that the message sent was (my, my, m;_;) = (1,1,1)
o Epeo: The sequence u™(ry,_, = 1,1 = 1) does not satisfy (2).

o Epe1: There exists j # 1 for which the sequence u" (7, _, = j, 7, = 1) satisfy (2).

o Epe,o: The sequences (z"(rny,_; = 1,/ = 1,1y = 1),u™(1}_, = 1,7, = 1)) do not satisfy(3).

o Epe: There exists (k, 5) # (1,1) for which the sequences
(:v"(fng_l =j,my, =1,my =k),u"(m,_, =7, fng)) satisfy (3). This part is divided to three
cases.

1) Epe1: The output of the decoder is: mg #1, my_, =1
2) Epe,1: The output of the decoder is: fng’ =1, my_; #1.
3) Epe,1: The output of the decoder is: my # 1, mj_, # 1.

Probability of error: In the probability analysis we represent the message m;_, by a symbol j, and m}
by k.

e FEReo: The probability of Er. o goes to zero due to the law of large numbers.

e ERe 1t In that case, the relay did not decode mg well.

p(ERe,l) :p{aj € {2737”~72an} s.t. (l’?(l),un(l,]),y?) € Ten(leUv Yl)}

2"R/
<> p{(al (1), u"(1,),y7) € T (X1, U, Y1)}
j=2

2nR/
< 9—n(I(U;Y1|X1)—e€)
i=2

< (R =I(UY1|X1)+e)
This probability goes to zero if
R < I(U; 1] X0). )

e Epc: The probability of Ep. o goes to zero due to the law of large numbers.

o Ep.: We fully analyze Ep,; for every ¢ = 1,2, 3.

1) Epe1: In that case, the decoder did not decode m; well.

p(EDe,l) :p{ﬂk’ S {2737 ”"2nR”} s.t. (zn(lv Lk)v x?(l)v un(lv 1)7 yn) € Ten(Xv XlaU’ Y)}



QnR”

< D el (L LK), 2 (1), u"(1,1), y") € T(X, X1,U,Y)}
k=2

QnR”

< Z 2—1’L(I(X;Y‘U,X1)—6)
k=2

< 2n(R”—I(X;Y\U,X1)+6) )

Thus, the probability goes to zero if
R < I(X;Y|U, Xy). ©)
2) Epe,2: In that case, the decoder did not decode m;Fl well.

P(Epes) = p{3j € {2,3,...,2"%} sit. («"(j,1,1), 27(j), u"(j, 1), y") € T(X, X1,U,Y)}

gnR'

< Z p{(=z"(j,1,1), 21(j), u"(4,1), y*) € T(X,X1,U,Y)}

QnR/
< Z 27n(I(X,X1,U;Y)7e)
i=2

< 2n(R'7I(X,X1,U;Y))+e)'

Thus, the probability p(Ep. 2) goes to zero if
R <I(X,X,,U;Y). (6)
3) Epe,s: In that case, the decoder did not decode my/, m;_, well.

p(Epes) = p{3k,j € {2,3,....,2" "} x {2,3,..., 2"} s.t.

(=" (4,1, k), 21(5), v"(5,1), y") € T(X, X1, U,Y)}

2nR// 2nR/

<Y {6 L k), 273), w'G1), y") € T(X, X1, U, Y)}

k=2 j=2

27LR// QW,R’

< Z Z o—n(I(X,X1,U;Y)—c)

k=2 j=2

< on(R'+R"—I(X,X1,U;Y))+e)

Thus, the probability p(Ep 3) goes to zero if

R +R'<I(X,X1,U;Y). 7)



First, Note that in order for this backwards decoding to work, we must always send mjg = 1. This
consideration does not effect the rate because the number of blocks B goes to infinity. Second, Note that
p(ylx,x1,u) = p(y|x,z1) due to the definition of the channel; hence I(X,X,,U;Y) = I(X, X;;Y).
Also note that condition (6) is included in condition (7). Now, we summarize. Using Fourier-Motzkin

elimination, equations (4), (5), and R = R’ + R”, will reduce to
R<I(U;v1|X1) + I(X;Y]X1,U). 8)

Furthermore, equations (7) and R = R’ + R” will leave us with
R<I(X,X1;Y). )

Hence, we showed that if a rate R satisfies (1), the probability of error goes to zero, and the theorem is
proven. |

Let us mention a few remarks.

Remark 1 The division of each m; to (mj, m;) depends on the relay channel. The more the relay can

send to the receiver, the bigger R’ is.

Remark 2 In the previous lecture we gave an achievable rate for the relay channel in a different way,
without dividing the message m;. As a matter of fact, the coding scheme is the same, except that there
we used R” = 0, and hence U = X. If we apply the result here for U = X, then I(X;Y|X;,X) =0
and we have the following achievable rate:
R< r(nax){minI(X, X;Y), I(X;Y1]X1)}.
p(T,T1

This bound is the same as given in the previous lecture. Note that this bound was shown by Cover and
El Gamal [1, Theorem 1] to be the capacity of the relay channel, where the relay channel is physically

degraded, i.e.,

P(@/a y1|$7x1) = p(yl|$>$1)p(y|yla$1)-

They used a ’decode and forward’ method, instead of the partial one, as we can see when R” = 0.

Remark 3 Another simple case is when the relay can send only little information to the decoder. In that
case we don’t want to use it at all, i.e., ' = 0 and U = X; = (. Therefore, we are left with one constraint,
which is
C>maxI(X;Y).
p(z)

Not surprisingly, this is what we would expect if we take the relay out of the model.



Remark 4 The ’partial decode and forward’ method was used in [1, Theorem 7], where the model is more
complex. If the relay generates some Y7, and an auxiliary r.v. V generates the input X; of the channel,

then an achievable rate is
Ry = maxmin{I(X;Y,Y1|X1,U) + I(U; Y1|X1; V), I(X,X;Y) — I(Yy;Y1|X1, X,U,Y)}.

Setting Y1 =0, V =0, we are left with the expression in (1). This was mentioned by El Gamal and Aref

[2] later on.
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