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Lecture 1

Lecturer: Haim Permuter Scribe: Avihay Shirazi and Offir Duvdevani

I. M ETHOD OF TYPES AND STRONG TYPICALITY

The method of types evolved from notions of strong typicality; some of the ideas

were used by Wolfowitz [4] to prove channel capacity theorems. The method was fully

developed by Csiszar and Korner [1], who derived the main theorems of information

theory from this viewpoint.

Let xn = (x1, x2, ..., xn) be a sequence from alphabetX = (a1, a2, a3, ...a|X |).

Let N(a|xn) be the number of times thata appears in sequencexn.

Definition 1 (Type) The typePxn (or empirical probability distribution) of a sequence

xn is the relative proportion of occurrences of each symbol ofX , i.e.,Pxn(a) = N(a|xn)
n

for all a ∈ X .

Example 1 Let X = {0, 1, 2}, let n = 5 and x5 = (1, 1, 2, 2, 0). ThenN(0|x5) = 1,

N(1|x5) = 2 andN(2|x5) = 2. Hence,Pxn =
(

1
5
, 2
5
, 2
5

)

.

Definition 2 (all possible types)Let Pn be the collection of all possible types of

sequences of lengthn.

For example, ifX = {0, 1}, the set of possible types with denominatorn is

Pn =

{

(P (0), P (1)) :

(

0

n
,
n

n

)

,

(

1

n
,
n− 1

n

)

, ...,

(

n

n
,
0

n

)}

. (1)

Lemma 1 An upper bound for|Pn|:

|Pn| ≤ (n+ 1)|X |. (2)
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Proof: There are|X | components in the vector that specifiesPxn. The numerator

in each component can take on onlyn+1 values. So there are at most(n+1)|X | choices

for the type vector.

Definition 3 (Type class) Let P ∈ Pn, The set of sequences of lengthn with typeP is

called type class of P, denotedT (P ):

T (P ) = {xn : Pxn = P} (3)

Theorem 1 (Probability of a sequence in the type class)If X ∼ Q i.i.d., the proba-

bility of xn depends only on the type ofxn, i.e.,Pxn

Q(xn) = 2−n(H(Pxn )+D(Pxn ||Q)) (4)

Proof:

Since{Xi}i≥1 are i.i.d,

Qn(xn) =

n
∏

i=1

Q(xi). (5)

Now consider

logQn(xn) =

n
∑

i=1

logQ(xi) (6)

(a)
=

∑

a∈X

N(a|xn) logQ(a) (7)

(b)
= n

∑

a∈X

Pxn(a) logQ(a) (8)

= n
∑

a∈X

Pxn(a) log
Q(a)

Pxn(a)
· Pxn(a) (9)

= n(−H(P )−D(P ||Q)), (10)

where

(a) follows because eacha ∈ X contributes exactlylogQ(a) times it’s number of

occurences inxn to the sum in (6).

(b) follows from the definition ofPxn(a).
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Hence we obtained

Qn(xn) = 2−nH(P )+D(P ||Q). (11)

Corollary 1 if xn is in the type class of Q, then we getQ(xn) = 2−nH(Pxn).

The following theorem tells us how many sequences, asymptotically, exist of type

P ∈ Pn.

Theorem 2 (size of a type class)For any typeP ∈ Pn

|T (p)| .
= 2nH(P ) (12)

Wherean
.
= bn if lim

n→∞

1
n
log(an

bn
) = 0.

Example 2 Question: How many binary sequences of lengthn with 50% 0 and 50% 1

exists?

Answer: An exact calculation yields
(

n
n
2

)

. An asymptotic calculation Using Theorem 2

yields that
(

n
n
2

) .
= 2n.

There are two possible ways to prove Theorem 2, one is a combinatorial proof and

the other is a probabilistic. The combinatorial proof is based on Stirling’s Formula.

Lemma 2 (Stirling’s formula) :

√
2πn

(n

e

)n

≤ n! ≤
√
2πn

(n

e

)n

e
1

12n (13)

Combinatorial proof of Theorem 2:

nP (a1) nP (a2) . . . nP (a|X |)

a1 a2 a|X |

Fig. 1. The total length of the sequence isn and the part of the sequence that equals toai is nP (ai)
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|T (P )| =
(

n

nP (a1), nP (a2), . . . , nP (aX )

)

=
n!

(nP (a1))!(nP (a2))! . . . (nP (a|X |))!
(14)

Using Stirling’s formula with equation (5) we get:

n!
.
=

(n

e

)n

(15)

|T (P )| .
=

nn

(nP (a1))nP (a1)(nP (a2))nP (a2) . . . (nP (a|X |))
nP|X|

(16)

=
nn

(n)nP (a1)(n)nP (a2) . . . (n)nP|X|
∏|X |

i=1 P (ai)nP (ai)
(17)

=
1

∏|X |
i=1 P (ai)nP (ai)

(18)

Hence:

|T (P )| = 2log |T (P )| .
= 2−n

∑|X|
i=1 P (ai) log(P (ai)) = 2nH(P ) (19)

Lets summarize our results so far:

• |Pn| ≤ (n+ 1)X

• |T (P )| .
= 2nH(P )

• Q(xn) = 2−n(H(Pxn )+D(Pxn ||Q)

Theorem 3 The probability of the type classT (P ) where the sequences are drawn i.i.d.

∼ Q is

Qn(T (P ))
.
= 2−n(D(P ||Q). (20)

Proof:

Qn(T (P )) =
∑

xn∈T (P )

Q(xn) (21)
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(a)
=

∑

xn∈T (P )

2−n(H(Pxn)+D(Pxn ||Q)) (22)

(b)
=

∑

xn∈T (P )

2−n(H(P)+D(P||Q)) (23)

= |T (P )|2−n(H(P)+D(P||Q)) (24)
(c)
.
= 2−nD(P||Q), (25)

where (a) follows from Theorem 1, (b) from the fact that all sequences have the same

typePxn = P and (c) from Theorem 2.

Theorem 4 (Sanov’s Theorem, known also as Large deviation)LetX ∼ Q i.i.d. and

let E be a closed set of probabilities, then:

lim
n→∞

logQn(E) = −min
P∈E

D(P ||Q) = −D(P ∗||Q), (26)

whereQn(E) is the probability thatxn ∈ E i.e. Qn(E) = Pr(P ∈ E) andP ∗ is defined

asP ∗ = argmin
P∈E

D(P ||Q).

To get more intuitive understanding we can think ofD(P ∗||Q) as the minimum distance

between E space and Q as shown in the figure:

E
P ∗Q

D(P ∗||Q)

Fig. 2. LetX ∼ Q thanP ∗ is the typeP ∈ E that gives the minimum toD(P ||Q).

Qn(E)
.
= 2−nD(P ∗||Q) (27)
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P ∗ = argmin
P∈E

D(P ||Q) (28)

Historical note: Sanovs theorem [3] was generalized by Csiszar [2] using the method of

types.

Example 3 Let Q(x = 1) = Q(x = −1) = 1
2
, What is the probability of getting an

empirial distrebution that satisfies:P (x = 1) ≥ 0.8, P (x = −1) ≤ 0.2?

Answer:P ∗ is the probabilityP (x = 1) = 0.8, P (x = −1) = 0.2 so by using Sanov

theorem and Theorem 4 we get our result:Q(E)
.
= 2−nD(P ∗||Q)

Proof of Theorem 4:First we will find the upper bound

Qn(E) =
∑

P∈E
⋂

Pn

Q(T (P )) (29)

(a)

≤
∑

P∈E
⋂

Pn

2−nD(P ||Q) (30)

≤
∑

P∈E
⋂

Pn

max
p∈E

⋂
Pn

2−nD(P ||Q) (31)

=
∑

P∈E
⋂

Pn

2
−n min

P∈E
⋂

Pn
D(P ||Q)

(32)

(b)

≤ (n+ 1)|X |2
−n min

P∈E
⋂

Pn
D(P ||Q)

, (33)

where (a) follows from Theorem 3, and (b) follows from the fact that |E| ≤ |Pn| and

the bound on the number of types (Lemma 1).

Now we will find the lower bound:

Qn(E) =
∑

P∈E
⋂

Pn

Q(T (P )) (34)

(a)

≥ Q(T (P ∗)) (35)
(b)
.
= 2−nD(P ∗||Q) (36)

where (a) follows from the fact that we take into consideration only one type and (b)

According to Theorem 3.
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Using the lower bound from (51) and the upper bound from (47) we get:

2−nD(P ∗||Q) ≤ Qn(E) ≤ (n+ 1)|X |2
−n min

P∈E
⋂

Pn
D(P ||Q)

. (37)

(38)

which proves that:

Qn(E)
.
= 2−nD(P ∗||Q) (39)

Example 4 Let X, Y be i.i.d.X, Y ∼ PXPY .

We look at a specific sequence(Xn, Y n) with type PX,Y , what is the probability that a

sequence(xn, yn) which was generated from i.i.d.PXPY has a joint typePX,Y ?

Answer:Q(T (P ))
.
= 2−nD(P ||Q) = 2−nD(PX,Y ||PXPY ) = 2−nI(X;Y )

II. JOINT TYPE

Definition 4 (Joint type) The typePxn,yn (or empirical probability distribution) of a

pair-sequence(xn, yn) is the relative proportion of occurrences of each pair-symbol of

X × Y , i.e.,Pxn,yn(a, b) =
N(a,b|xn,yn)

n
for all a ∈ X and b ∈ X .

Example 5 Let X = {0, 1}, andY = {A,B}. let n = 5 and x5 = (1, 1, 0, 1, 0) and

y5 = (A,A,B,A,B). Then N(0, A|x5) = 0, N(0, B|x5) = 2, N(1, A|x5) = 3 and

N(1, A|x5) = 0.

Theorem 5 (Conditional type)

Let us define theconditional typePxn|yn (or conditional empirical distribution)

Pxn|yn(a|b) ,
N((a, b)|xn, yn)

N(b|yn)
(40)

=
PXn,Y n(a, b)

PY n(b)
. (41)

Let W (y|x) ∈ Pn(x|y) be a conational probability, The conditional typeTW (yn)

TW (yn) = {xn ∈ X n : PXn|Y n(a|b) = WX|Y (a|b), ∀a, b ∈ X ,Y} (42)

= {xn ∈ X n : PXn,Y n(a, b) = WX|Y (a|b)PY n(b), ∀a, b ∈ X ,Y} (43)
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H(X|Y ) = −
∑

x∈X

∑

y∈Y

P (x, y) logP (x|y) (44)

PX,Y (a, b) = PY n(b)WX|Y (a|b) (45)

Than:

|TW (yn)| .
= 2nH(X|Y ) (46)

Proof:

nPY n(b1) nPY n(b2) . . . nPY n(b|Y|)

b1 b2 b|Y|

Fig. 3. Length of eachbi.

Now if we haveb1 we get:

nPXn,Y n(a1, b1) nPXn,Y n(a2, b1) . . . nPXn,Y n(a|X |, b1)

a1 a2 a|X |

Fig. 4. Length of eachai given b1.

Therefore we can use combinatorical proof as we did in the nonconditional case:

(

nPyn(b1)

nPxn,yn(a1, b1)nPxn,yn(a2, b1) . . . nPxn,yn(a|X |, b1)

)

.
= 2nH(X|y=b1)Pyn(b1) (47)

(

nPY n(b1)

nPY n(b1)Pxn|yn(a1|b1)nPY n(b1)Pxn|yn(a2|b1) . . . nPY n(b1)Pxn|yn(a|X ||b1)

)

.
= 2nPY n (b1)H(X|y=b1)

(48)

|TW (yn)| .
=

|Y|
∏

i=1

2nH(X|y=bi)PY n (bi) = 2nH(X|Y ) (49)
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III. STRONG TYPICALITY

Definition 5 (ǫ-strongly typical) A sequencexn ∈ X is said to beǫ-strongly typical

with respect to a distributionP (x) on X if

1) For all a ∈ X with PX(a) > 0 we have

|Pxn(a)− PX(a)| ≤
ǫ

|X | (50)

2) If PX(a) = 0 thenPxn(a) = 0.

Definition 6 (ǫ-joint strongly typical) A pair of sequences(xn, yn) ∈ X ×Y is said to

be ǫ-joint strongly typicalwith respect to a distributionP (x, y) on X × Y if

1) For all (a, b) ∈ X × Y with PX,Y (a, b) > 0 we have

|Pxn,yn(a, b)− PX,Y (a, b)| ≤
ǫ

|X ||Y|
(51)

2) If PX,Y (a, b) > 0 thenPxn,yn(a, b) = 0.

Definition 7 (Strongly typical set) The set of sequences(xn, yn) ∈ X n × Yn that are

ǫ-joint strongly typical is calledstrongly typical setand is denoted asT (n)
ǫ (X, Y ) or

T
(n)
ǫ (PX,Y ). I.e.,

T (n)
ǫ (X, Y ) , {(xn, yn) ∈ X n × Yn : |Pxn,yn − P (x, y)| ≤ ǫ} (52)

In a shorter notation we write it as

T (n)
ǫ (X, Y ) , {xn, yn : |Pxn,yn − P (x, y)| ≤ ǫ}. (53)

Definition 8 (Strongly conditional typical set T (n)
ǫ (X|yn))

T (n)
ǫ (Y |xn) , {yn : (xn, yn) ∈ T (n)

ǫ (X, Y )}

= {yn : |Pxn,yn − P (x, y)| ≤ ǫ}. (54)

The following lemma follows directly from the Sanov’s Theorem.

Lemma 3 Suppose w.l.o.g. thatQ(x) > 0 for all x ∈ X (otherwise shrink the alphabet

to its effective size) and thatXi are i.i.d. ∼ Q(x). Then there existsǫ′(ǫ) such that

ǫ′(ǫ) → 0 as ǫ → 0 such that for all sufficiently largen

2−n[D(P ||Q)+ǫ′] ≤ Pr(Xn ∈ T (n)
ǫ (P )) ≤ 2−n[D(P ||Q)−ǫ′]. (55)
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Lemma 4 Consider a joint distributionPX,Y with marginalPX andPY . GenerateXn

i.i.d. ∼ PX and∼ PY . Then

2−n[I(X;Y )+ǫ′] ≤ Pr((Xn, Y n) ∈ T (n)
ǫ (X, Y )) ≤ 2−n[I(X;Y )−ǫ′]. (56)

IV. A LTERNATIVE PROOFS BASED ONLY ON PROBABILISTIC METHODS

A reminder on Types:

Pxn(a) =
N(a|xn)

n
(57)

|T (P )| .
= 2nH(P ) (58)

xn ∈ T (P ), Qn(xn) = 2−n

(

H(P )+D(P ||Q)
)

(59)

(60)

A reminder on strongly typical definition:

T (n)
ǫ (PX) = T (n)

ǫ (X) =
{

xn ∈ X n : |Pxn(a)− PX(a)| ≤ ǫPX(a)
}

(61)

A. Jointly Strong Typical Set

Let us define

T (n)
ǫ (PXY ) = T (n)

ǫ (X, Y ) =
{

xn, yn : |Pxnyn(a, b)− PXY (a, b)| ≤ ǫPXY (a, b)
}

. (62)

Properties:

1) If Xn ∼ i.i.d. PX , then

lim
n→∞

Pr
{

Xn ∈ T (n)
ǫ (X)

}

= 1 (63)

or equivalently

1− δ(ǫ) ≤ Pr
{

Xn ∈ T (n)
ǫ (X)

}

≤ 1, (64)

where∀ǫ > 0, limn→∞ δǫ,n = 0.

Proof: Because of the L.L.N.
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2) ForXn ∼ i.i.d. ∼ PX , then for any sequencexn ∈ T
(n)
ǫ (X) we have

2−nH(X)(1+ǫ)
(i)

≤ p(xn) =

n
∏

i=1

PX(xi)
(ii)

≤ 2−nH(X)(1−ǫ). (65)

Proof: Note thatp(xn) =
∏

a∈X PX(a)
N(a|xn), hence, the left hand side of the

inequality (i) follows from

1

n
log p(xn) =

1

n

∑

a∈X

N(a|xn) logPX(a) (66)

=
∑

a∈X

Pxn(a) logPX(a) (67)

(a)

≥
∑

a∈X

(1 + ǫ)PX(a) logPX(a) (68)

= −H(X)(1 + ǫ), (69)

where step(a) follows from (61).

The right hand side of the inequality(ii) follows from

1

n
log p(xn) =

1

n

∑

a∈X

N(a|xn) logPX(a) (70)

=
∑

a∈X

Pxn(a) logPX(a) (71)

≤
∑

a∈X

(1− ǫ)PX(a) logPX(a) (72)

= −H(X)(1− ǫ). (73)

3) The size of the strongly typical set can be bounded as

(1− δǫ,n)2
nH(X)(1−ǫ)

(i)

≤ |T (n)
ǫ (X)|

(ii)

≤ 2nH(X)(1+ǫ). (74)

Proof: recall that(1− δ) ≤ Pr
{

Xn ∈ T
(n)
ǫ (X)

}

≤ 1, then, the left hand side

inequality (i) follows from

Pr
{

Xn ∈ T (n)
ǫ (X)

}

=
∑

xn∈T
(n)
ǫ (X)

p(xn) (75)
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≤
∑

xn∈T
(n)
ǫ (X)

2−n(H(X)(1−ǫ) (76)

= |T (n)
ǫ (X)|2−nH(X)(1−ǫ), (77)

and because(1 − δ) ≤ Pr
{

Xn ∈ T
(n)
ǫ (X)

}

, we get that(1 − δ)2nH(X)(1−ǫ) ≤

|T (n)
ǫ (X)|. The right hand side inequality(ii) follows from

1 ≥ Pr
{

Xn ∈ T (n)
ǫ (X)

}

(78)

=
∑

xn∈T
(n)
ǫ (X)

p(xn) (79)

≥
∑

xn∈T
(n)
ǫ (X)

2−nH(X)(1+ǫ) (80)

= |T (n)
ǫ (X)|2−nH(X)(1+ǫ), (81)

therefore,|T (n)
ǫ (X)| ≤ 2nH(X)(1+ǫ).

B. Conditionally strong typical set

For a givenxn ∈ X n, let us define

T (n)
ǫ (Y |xn) =

{

yn : (xn, yn) ∈ T (n)
ǫ (X, Y )

}

. (82)

Notice that if (xn, yn) ∈ T
(n)
ǫ (X, Y ), then surelyxn ∈ T

(n)
ǫ (X).

Properties:

1) If xn ∈ T
(n)
ǫx (X), p(yn|xn) =

∏n

i=1 PY |X(yi|xi) (DMC), ǫx ≤ ǫ, then

1− δǫ,ǫx,n ≤ Pr
{

yn ∈ T (n)
ǫ (Y |xn)

}

≤ 1 (83)

where∀ǫ, ǫx > 0, δǫ,ǫx,n → 0 asn → ∞.

Proof: Follows directly from the L.L.N.

2) If yn ∈ T
(n)
ǫ (Y |xn), p(yn|xn) =

∏n

i=1 PY |X(yi|xi) (DMC), then

2−nH(Y |X)(1+ǫ)
(i)

≤ p(yn|xn) =
n
∏

i=1

PY |X(yi|xi)
(ii)

≤ 2−nH(Y |X)(1−ǫ). (84)
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Proof: Notice that

p(yn|xn) =
n
∏

i=1

PY |X(yi|xi) =
∏

a∈X
b∈Y

PY |X(b|a)N(a,b|xn,yn). (85)

Now, the left hand side of the inequality(i) follows from

1

n
p(yn|xn) =

1

n

∑

a∈X
b∈Y

N(a, b|xn, yn) logPY |X(b|a) (86)

=
∑

a∈X
b∈Y

Pxn,yn(a, b) logPY |X(b|a) (87)

≥
∑

a∈X
b∈Y

(1 + ǫ)PXY (a, b) logPY |X(b|a) (88)

= −H(Y |X)(1 + ǫ). (89)

The right hand side of the inequality(ii) follows from

1

n
p(yn|xn) =

1

n

∑

a∈X
b∈Y

N(a, b|xn, yn) logPY |X(b|a) (90)

=
∑

a∈X
b∈Y

Pxn,yn(a, b) logPY |X(b|a) (91)

≤
∑

a∈X
b∈Y

(1− ǫ)PXY (a, b) logPY |X(b|a) (92)

= −H(Y |X)(1− ǫ). (93)

3) Givenxn ∈ T
(n)
ǫx (X), then

(1− δǫ,ǫx,n)2
nH(Y |X)(1+ǫ)

(i)

≤ |T (n)
ǫ (Y |xn)|

(ii)

≤ 2nH(Y |X)(1−ǫ). (94)

The proof is done in a similar way to the proof of (74).

Lemma 5 Consider a joint PMFPXY . Let xn ∈ T
(n)
ǫx (X) andyn drawn i.i.d. according

to PY and independent ofxn, then

2−n

(

I(X;Y )+δǫ

)

(i)

≤ Pr
{

Y n ∈ T (n)
ǫ (Y |xn)

}

(ii)

≤ 2−n

(

I(X;Y )−δǫ

)

(95)
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for δǫ → 0 as ǫ → 0.

Proof: The left hand side inequality(i) follows from

Pr
{

Y n ∈ T (n)
ǫ (Y |xn)

}

=
∑

yn∈T
(n)
ǫ (Y |xn)

p(yn) (96)

≥
∑

yn∈T
(n)
ǫ (Y |xn)

2−nH(Y )(1+ǫ) (97)

= |T (n)
ǫ (Y |xn)

}

|2−nH(Y )(1+ǫ) (98)

≥ (1− δǫ,n)2
n(H(Y |X)(1−ǫ)2−nH(Y )(1+ǫ) (99)

= (1− δǫ,n)2
−n(I(X;Y )+δǫ,n). (100)

The right hand side inequality(ii) follows from

Pr
{

Y n ∈ T (n)
ǫ (Y |xn)

}

=
∑

yn∈T
(n)
ǫ (Y |xn)

p(yn) (101)

≤
∑

yn∈T
(n)
ǫ (Y |xn)

2−nH(Y )(1−ǫ) (102)

= |T (n)
ǫ (Y |xn)|2−nH(X)(1−ǫ) (103)

≤ 2−n

(

H(Y )−H(Y |X)
)

+nǫ

(

H(Y )+H(Y |X)
)

(104)

= 2−n

(

I(X;Y )−δǫ

)

. (105)
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APPENDIX I

PROBABILISTIC PROOF OFTHEOREM 2:

1 ≥ Pr(xn ∈ T (P )) (106)

(a)
=

∑

xn∈T (P )

Pr(xn) (107)

(b)
=

∑

xn∈T (P )

2−nH(P ) (108)

= |T (P )|2−nH(P ) (109)

(a) The probability of a subset where one element is chosen from the whole set equals

to the sum of the probabilities of each element in the subset.For example, if we have

a setA,B,C where the probability of choosingA is PA, B is PB andC is PC , where

PA +PB +PC = 1, then the probability of choosing from the subset(A,B) is PA +PB.

(b) Using Theorem 1.

Therefore:

|T (P )| ≤ 2nH(P ) (110)

In order to prove the other part we need the following lemma:

Lemma 6 P n(T (P )) ≥ P n(T (Q))

Proof: Let Xn be of a typeP . The termP n(T (P )) is the probability of type class

T (P ) where the sequences of lengthn are drawn according toP (xn) =
∏n

i=1 P (xi), and

let Q ∈ Pn.

Consider

P n(T (P ))

P n(T (Q))

(a)
=

|T (P )|
∏

a∈X P (a)nP (a)

|T (Q)|
∏

a∈X P (a)nQ(a)
(111)

(b)
=

(

n

nP (a1),nP (a2),...,nP (a|X|)

)
∏

a∈X P (a)nP (a)

(

n

nQ(a1),nQ(a2),...,nQ(a|X|)

)
∏

a∈X P (a)nQ(a)
(112)
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(c)
=

∏

a∈X

(nQ(a))!

(nP (a))!
P (a)n(P (a)−Q(a)) (113)

(a) Using the fact that probability of each typePxn ∈ Pn is given by:

Pxn =
∏n

i=1 P (xi) =
∏

a∈X P (a)N(a|xn) =
∏

a∈X P (a)nP (a).

(b) Using combinatorical math it is known that the number of possibilities to arange a

vector{xn : Pxn = P} is:
(

n

nP (a1),nP (a2),...,nP (a|X|)

)

.

(c)
( n
nP (a1),nP (a2),...,nP (a|X|)

)

( n
nQ(a1),nQ(a2),...,nQ(a|X|)

)
=

∏

a∈X
(nQ(a))!
(nP (a))!

Using the simple boundm!
n!

≥ nm−n we obtain:

P n(T (P )

P n(T (Q))
≥

∏

a∈X

(nP (a))nQ(a)−nP (a)P (a)n(P (a)−Q(a)) (114)

=
∏

a∈X

nn(Q(a)−P (a)) (115)

= nn(
∑

a∈X Q(a)−
∑

a∈X P (a)) (116)

= nn(1−1) = 1 (117)

Using Lemma 6 let us show that|T (P )| ≥ 2nH(P )

(n+1)|X| :

1 =
∑

Q∈Pn

P n(T (Q)) (118)

≤
∑

Q∈Pn

max
Q

P n(T (Q)) (119)

(a)
=

∑

Q∈Pn

P n(T (P )) (120)

(b)

≤ (n + 1)|X |P n(T (P )) (121)

(c)
= (n + 1)|X |

∑

xn∈T (P )

2−nH(P ) (122)

= (n + 1)|X ||T (P )|2−nH(P ) (123)

(a) Using theorem 2 it is clear that:max
Q

P n(T (Q)) = P n(T (P )).

(b) Using Lemma 1.

(c) Using Theorem 3.
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Therefore our final result is:

2nH(P )

(n+ 1)|X |
≤ |T (P )| ≤ 2nH(P ) (124)

which imply that:

|T (P )| .
= 2nH(P ) (125)


