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Multi-User Information Theory November 16th, 2009

Lecture 5

Lecturer; Haim Permuter Scribe: Offir Duvdevani

I. METHOD OF TYPES

The method of types evolved from notions of strong typigalsome of the ideas were used by
Wolfowitz [4] to prove channel capacity theorems. The mdthveas fully developed by Csiszar and

Korner [1], who derived the main theorems of informationdtyefrom this viewpoint.

Let X1, X,...X,, be a sequence from alphab¥t= (a1, az, as, ...a;x)).

let N(a|2™) be the number of times thatappears in sequencé.

Definition 1 (Type)The typeP,~ (or empirical probability distribution) of a sequenee, x5, x3, ..., x, IS

the relative proportion of occurrences of each symbakofi.e., P,» (a) = X420 for all a € X [5].
Definition 2 P,, is the collection of all possible types of sequences of lemgfl].

Definition 3 (Type classyet P € P,, The set of sequences of lengthwith type P is called type class
of P, denotedl’(P):

T(P) = {a" : Py = P} @)

Theorem 1

[Pal < (n+ 1)1 2
Theorem 2If X ~ (@ i.i.d., the probability ofx™ depends only on the type of*, i.e., P
Q(a™) = 2~ "H(Pen)+D(Pan [1Q)) ®)
corollary if z™ is in the type class of Q, then we g€t z") = 2" () [5],
Theorem 3(size of a type clas&'(P)) For any typeP € P,
IT(p)| = 2" 4)

Wherea,, = b,, if lim %bg(Z—n) =0
n—00 n
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There are two possible ways to prove Theorem 3, one is a catdrical proof and the other is a

probabilistic.

« Proof 1 - combinatorical proof:

| - | a2 | | il |

| nP(a1) | nP(az) | | nP(ax) |

Fig. 1. Length of eaclu;

n n!
Bl (nP(al),nP(ag),...,nP(aX)) (nP(al))!(nP(ag))!...(nP(aMg‘))! )
Lemma 1 (Stirling’s formula):
2mn (E)n <nl <V2mn (E)neﬁ (6)
e (&
Using Stirling’s formula with equation (5) we get:
n n
o= (2
o= (2) (7)
T(P) = i (8)
— (nP(a1))"P@) (nP(az))P2) . (nP(aj)) 1
nn
= 9
(m)2 ) ()P (o) ()" P TLE P(ag) o) ©
1
= 10
[T23 Pas)ted 0
Hence:
IT(P)| = 2108 T(P)| = g=n X%} Plai) log(P(a:)) — gnH(P) (11)

Example 1 Question: How many binary sequences of lengttvith 50% 0 and 50% 1 exists?
answer:(y,) = 2"

« Proof 2 - a probabilistic proof:
1> Pr(z" € T(P)) (12)

L= ) P (13)
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© S g (14)
zneT(P)
= [T(P)2 "H®) (15)

(a) The sum of probabilities is always less equal to one.
(b) Using theorem 2.
Therefore:
T(P)| < 2"P) (16)

In order to prove the other part we need the following lemma:

Lemma 2 P(T(P)) > P(T(Q))

Proof:

Let X" be of a typeP, P"(T(P)) is the probability of type clas®(P) and letP € P,.

It is obvious that the probability of type clag¥ P) must be greater or equal than the probability of
T(P), hence:

PY(T(P)) > P"(T(P)), YPeP, (17)
PYT(P) (@ |T(P)loex Pla)"" (18)
PY(T(P)) IT(P)| e Pla)P@

n nP(a)
(:b) (nP(a1),nP(ag),..,,nP(a‘X‘)) HaGX P(a) i (19)

(np(al),nﬁ’(a?),.,.,nls(a‘x‘)) Han P(a)nP(a)

(© H (”p(a))! n(P(a)—P(a))
< e P(a) (20)
L nP(a))
(a) Using the fact that probability of each typg. € P, is given by:
le, _ H;LZI P(J?Z) _ HaGX P(G)N(alx ) _ Han P(a)nP(a)_
(b) Using combinatorical math it is known that the number o§gibilities to arange a vectdr” :
Ppn = P} is: (nP(a1),nP(aQ),m,nP(a‘X‘))'

('H.P(a. ),'rLP(U.”),H,,nP(a )) nP(a))!
O e R | W L

Cerconmpiegs,nptoyep)
nP(a1)nP(ag),....nPa x|

Using the simple bound;j—!! > n™~" we obtain:

S > TPy pay =P ey
P”(T(P)) acX
= [ nrte-r (22)
acX
= (Caex P@-T e P@) (23)

= "= (24)
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Using lemma 2 let us show th&f'(P)| > %:
1= > PYTQ) (25)
QEPn
< ) maxPU(T(Q) (26)
QEPn
DS Aeat2) (27)
QEPn
(®)
< (n+1)*PYT(P)) (28)
N R ) A I (29)
zn €T (P)
= (n+ )Py E (30)

(a) Using theorem 2 it is clear thahgxP”(T(Q)) = P™"(T(P)).
(b) Using theorem 1.
(c) Using theorem 2.

Therefore our final result is:

2nH(P)

T S IT(P)| < 2"H(P) (31)

which imply that:

|T(P)| = 2"H ) (32)



Lets summarize our results so far:

o [Pul < (n+1)¥
. |T(P)| =271
o Q(zm) = 27 HPen )+ D(Pen]|Q)

Theorem 4
Q(T(P)) = 9—n(D(Pyn]|Q)

Proof:

QITP) = Y Qu"

zn €T (P)

(a) Z 9—n(H(Pyn)+D(Pyn||Q))
zneT(P)

- |T(P)|27n(H(Pwn)+D(Px"||Q))

= 9-nD(P.n||Q)

(a) Using theorem 2.

(b) using theorem 3.
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(33)

(34)

(35)

(36)

(37)
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Theorem 5(Sanov theorem - Large deviation)

Let X ~ @ i.i.d. and letE be a closed set of probabilities, then:

Q) = -D(P™[|Q) (38)

lim log Q" (FE) = fgli%D(Pxn
€

n—oo
Where@™(E) is the probability that: € F i.e. Q"(E) = Pr(P,~» € E) and P* definition is:
P* = arg min D(P|Q).

To get more intuitive understanding we can think[ofP*||Q) as the minimum distance between E space

and Q as shown in the figure:

. D(PIIQ)

Fig. 2. LetX ~ @ thanP* is the typeP € E that gives the minimum tdD(P||Q).

Q"(B) =27 (39)
P* = arg min D(P||Q) (40)

Historical note: Sanovs theorem [3] was generalized byZ@sif?] using the method of types.

Example2Let Q(x = 1) = Q(z = —1) = % What is the probability of getting an empirial distrebutio
that satisfiesP(x =1) > 0.8, P(x = —1) < 0.2?
Answer: P* is the probabilityP(z = 1) = 0.8, P(z = —1) = 0.2 so by using sanov theorem and theorem

4 we get our resultQ(FE) = 2-"P(71IQ)



Proof of theorem 5:

First we will find the upper bound:

(a) According to theorem 5.

Q"(E) =

INE

IN

—
IN=

S Q)

PeENPn

3 gmnD(PlR)

PeENPn

S max 27 PPIQ)

pEENP
PeEﬁPnpe NPxn

n_ min_ D(P||Q)

Z 27 PEENP

PeENPn

-+ 1), P71

(b) Using the fact thatE| < |P,,| and theorem 1.

Now we will find the lower bound:

(a) Taking only one type class is less equal of the sum of pk tglasses.

(b) According to theorem 5.

Q"(E)

= Z Q(T(P))
PeENPn

(a)

> Q(T(PY))

O 1 e

Z A’

Using the lower bound from (51) and the upper bound from (4&)get:

1
(n+ 1)I¥I

which proves that:

n _ min

9—nD(P*||Q) <QE) < (n+1)\2€|2_ PEENPn

Qn(E) - 2—nD(P* [1Q)

Example 3Let XY be ii.d. X, Y ~ PxPy.
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(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

We look at a specific sequen¢& ™, Y™) with type Px y, what is the probability that a sequen@é, y™)

wich was generated from ii’x Py has a joint typePx y ?

Answer:Q(T(P)) - 2—7LD(PHQ) _ 2—7LD(nyyHPXpy) — 2—nI(X;Y)



Theorem 6(Conditional type)
Let W (y|x) be a conditional PMF.

and let:
N((a,b)|z",y")
Ponjyn = — " 7=/
=i al?) N
_ PX",Y” (a, b)
Py~ (D)
Tw(y") = {a" € X" : Pxnjyn(alb) = Wxy(alb),Va,b € X, YV}
= {a"ea™: Pxn yn (a,b) = Wle(a|b)PYn(b),Va,b €X,V}
H(X|Y) = =Y > P(x,y)log P(z[y)
reEX yey
Pxy(a,b) = Py»(b)Wxy(alb)
Than:
ITW(y”)I - 2nH(X|Y)
Proof:
s ] |
| nPyn(br) nPyn(b2) | nPyn(by)) |
Fig. 3. Length of eaclb;.
Now if we haveb; we get:
o |

| nPXH’YH (al, bl) ‘ nPX",Y" (a27 bl)

Fig. 4. Length of eaclu; givenb;.

Therefore we can use combinatorical proof as we did in the aooditional case:

| nPXn,yn (a‘;(h bl)
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(52)

(53)

(54)

(55)

(56)

(57)

(58)
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nPyn (b1) = onH(X|y=b1)Pyn (b1) (59)
nP:Lm,’yn (al, bl)ann7yn (0/27 bl) e ann,yn (alX‘ 5 bl)
( nPyw(by1) ) = gnPyn(bi)H(X|y=b1)
TLPyn (bl)Pxn“ﬂ' (a1 |b1)nPyn (bl)Pxn“ﬂ' ((IQ |b1) N TLPyn (bl)le [y (a‘;ﬂ |b1)
|V (60)
ITW(y")I - H 2nH(X\y:bi)Pyn(bi) _ 2nH(X|Y) (61)
=1
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