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Mathematical methods in communication Oct 15, 2010
Lecture 1
Lecturer: Haim Permuter Scribe: Avihay Shirazi and Offir [davani

I. METHOD OF TYPES AND STRONG TYPICALITY

The method of types evolved from notions of strong typigaldome of the ideas
were used by Wolfowitz [4] to prove channel capacity theweiihe method was fully
developed by Csiszar and Korner [1], who derived the maimrdras of information

theory from this viewpoint.

Let 2" = (x1,29,...,2,) be a sequence from alphabé&t = (ai,as,as,...ax|).
Let N(a|z™) be the number of times thatappears in sequencé.

Definition 1 (Type) The typeP,. (or empirical probability distribution) of a sequence

N(a|z™)

x™ is the relative proportion of occurrences of each symbakofi.e., P, (a) =
forall a € X.

Example 1 Let X = {0,1,2}, letn = 5 andz® = (1,1,2,2,0). Then N(0|z°) = 1,
N(1|2°) = 2 and N(2|2°) = 2. Hence,P,» = (3,2, 2).

Definition 2 (all possible types)Let P, be the collection of all possible types of
sequences of length.

For example, ifX = {0, 1}, the set of possible types with denominators

P = {(P(O),P(l)) : (% %) , (% "; 1) (% %) } . 1)

Lemma 1 An upper bound folP,|:

1P| < (n+ 1) 2)
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Proof: There arelX’| components in the vector that specifiés.. The numerator
in each component can take on omly- 1 values. So there are at mast+ 1)I*! choices

for the type vector. [ |

Definition 3 (Type class)Let P € P,,, The set of sequences of lengthwith type P is
called type class of P, denotéd P):

T(P) = {a" : Py = P} 3)

Theorem 1 (Probability of a sequence in the type classlf X ~ @ i.i.d., the proba-
bility of «™ depends only on the type af', i.e., P;»

Q(z") = 2~ HPan)+D(Pen 1) (4)
Proof:
Since{X,},., are i.i.d,
Q"(2") = f[ Q(:). (5)
Now consider h
log Q™ (") Z log Q(;) (6)
s Z;N(a\w log Q(a) ()
© Z Py (a)log Q(a (8)
_na;Pxn a) log g(()> Pyn(a) (9)
=n(—H(P) - D(P||Q)), (10)

where
(a) follows because each € X contributes exactlyflog Q(a) times it's number of
occurences ix" to the sum in (6).

(b) follows from the definition ofP,-(a).
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Hence we obtained

Qn(l'n) — 2—7’LH(P)+D(P||Q). (ll)

Corollary 1 if 2™ is in the type class of Q, then we g@{(z") = 2~ H(Pen),

The following theorem tells us how many sequences, asymptlyt exist of type
PeP,.

Theorem 2 (size of a type class}or any typeP € P,
T (p)| = 27 (12)

Wherea, = b, if lim < log(§*) = 0.

n—oo

Example 2 Question: How many binary sequences of lengtivith 50% 0 and 50% 1
exists?

Answer: An exact calculation yield(sg). An asymptotic calculation Using Theorem 2
yields that(g) =",

There are two possible ways to prove Theorem 2, one is a catdoial proof and

the other is a probabilistic. The combinatorial proof isdshen Stirling’s Formula.
Lemma 2 (Stirling’s formula) :
2Tn (ﬁ>n <nl <V2mn (ﬁ)n e (13)
(& €

Combinatorial proof of Theorem 2:

| aq | g | | alx| |

| nP(ay) | nP(as) | | nP(ax) |

Fig. 1. The total length of the sequencenisand the part of the sequence that equals;tis nP(a;)
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T(P)| = " ) - n 14
IT(P) (nP(al), nP(as),...,nP(ay) (nP(ai))!(nP(az))!...(nP(ax))! (14)
Using Stirling’s formula with equation (5) we get:

. (M\"
= (7) 4o
T(P) = 16
| ( )| (nP(al))”P a1 ( (a2 ) (a2) o (nP(a‘X‘))”P\X\ ( )
= " (17)

(n)nP(m)(n)nP(ag) o (n)np\)(\ H|X| P( )nP(al)
1
- H|X| P(CLZ)"P (as) (18)
Hence:

IT(P)| = 208IT(P)] = 9=n =) Plan)log(P(a:) — gnH(P) (19)
[ |

Lets summarize our results so far:

. |T(P)| = 20(P)
° Q(xn) — 27n(H(Pac”)+D(Px”||Q)

Theorem 3 The probability of the type class(P) where the sequences are drawn i.i.d.
~Qis
Q" (T(P)) = 27PTI), (20)

Proof:

Q(T(P) = > Q" (21)
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(@) Z 9—n(H(P,n)+D(P,n|Q)) (22)
@neT(P)

®) Z 9—n(H(P)+D(P||Q)) (23)
€T (P)

_ |T(P)|2fn(H(P)+D(PHQ)) (24)

Y ymnrie), (25)

where (a) follows from Theorem 1, (b) from the fact that alfjsences have the same
type P,» = P and (c) from Theorem 2.

Theorem 4 (Sanov’'s Theorem, known also as Large deviationlet X ~ @ i.i.d. and

let £ be a closed set of probabilities, then:
lim log Q"(E) = —minD(P||Q) = —D(P*[|Q), (26)

whereQ"(FE) is the probability that™ € E i.e. Q"(E) = Pr(P € E) and P* is defined
as P* = argglelED(PHQ).

To get more intuitive understanding we can thinkafP*||Q) as the minimum distance

between E space and Q as shown in the figure:

. D(PQ)

Fig. 2. LetX ~ @ than P* is the typeP € F that gives the minimum t®(P||Q).

Q"(E) =27 P19 (27)
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P* = argminD(P[|Q) (28)
Historical note: Sanovs theorem [3] was generalized byzasif2] using the method of

types.

Example 3 Let Q(z = 1) = Q(z = —1) = 3, What is the probability of getting an
empirial distrebution that satisfie®(x = 1) > 0.8, P(x = —1) < 0.2?

Answer: P* is the probabilityP(z = 1) = 0.8, P(x = —1) = 0.2 so by using Sanov
theorem and Theorem 4 we get our resgitE) = 2-"P(F"1Q)

Proof of Theorem 4First we will find the upper bound

QUE) = ), QT(P) (29)
PeENPn

© S gl (30)
PEENPy

< max 2 "PFIQ) 31

- PG;'P PEEPn .

_ Z Q*Tlpeglirﬂlan(PHQ) (32)
PeENPn

—~
<
=

(PllQ)

—n  min D
(n—}-1)|X|2 PEENPn : (33)

IN

where (a) follows from Theorem 3, and (b) follows from thetfttat |F| < |P,| and
the bound on the number of types (Lemma 1).

Now we will find the lower bound:

Q'E) = ) QIT(P) (34)
PEENPn

2 Q) (35)

(i) 9—nD(P*|Q) (36)

where (a) follows from the fact that we take into considemratonly one type and (b)

According to Theorem 3.
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Using the lower bound from (51) and the upper bound from (4&)get:
2 D(PIIQ) < O (E) < (n 4 1)¥l2 "reEz, "I (37)
(38)
which proves that:
Q"(E) =2 (39)

Example 4 Let X,Y be i.i.d. X, Y ~ PxPy.

We look at a specific sequen¢&™, Y™) with type Px y, what is the probability that a
sequencéz”, y™) which was generated from i.i.dPx Py has a joint typePx y?
Answer: Q(T(P)) = 2-"P(FIIQ) = o=nD(Px.ylIPxPy) — 9=nl(X;Y)

1. JOINT TYPE

Definition 4 (Joint type) The type P,» ,» (or empirical probability distribution) of a
pair-sequencéz™, y") is the relative proportion of occurrences of each pair-syinaf
X x Y, 0.8, P yn(a,b) = YU for all o € X andb € X

Example 5 Let X = {0,1}, andY = {A,B}. letn = 5 andz® = (1,1,0,1,0) and
y®> = (A, A, B, A, B). Then N(0, A|z°) = 0, N(0, B|z®%) = 2, N(1, Alz%) = 3 and
N(1, Alz®) = 0.

Theorem 5 (Conditional type)

Let us define theonditional typeP,,» (or conditional empirical distribution)
N((a,b)|z",y")

. PX",Y” (CL, b)
- S (41)

Let W (y|x) € P™(z|y) be a conational probability, The conditional typg (y")
Tw(yn) = {l‘n cx"; Pxn‘yn(a‘b) = Wx‘y(a|b),Va, be X,y} (42)

= {l‘n c X" Pxn7yn(a, b) = W)ﬂy(&“))Pyn(b),va, b € X,y} (43)
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H(X|Y) = =>_ ) P(x,y)log P(z|y) (44)
zeX yey
PX7y(CL, b) = Pyn(b)W)ﬂy((l‘b) (45)
Than:
T (y")| = 201X (46)
Proof:
| by | by | | by |
| nPY”@lJ nPY”(bZ)| e | nPyn (b|y‘)|

Fig. 3. Length of eaclb;.

Now if we haveb; we get:

| a | a2 | | ajx| |

|nPX",Y"(a17 blt nPX”,Y"(a% b\l) - | nPvayyn(a|X|, bl)

Fig. 4. Length of eaclu; given b;.

Therefore we can use combinatorical proof as we did in theaguditional case:

( nPy" (bl) ) - 2nH(X\y:b1)Pyn(b1) (47)
an”,y" (al, bl)an”,y" (CLQ, bl) .. an"vy" (G,‘X‘, bl)
nPyn (bl)Pmnlyn(a,l|b1)nPYn(b1)Pmn|yn (a2|b1) e nPyn(bl)Pxn‘yn(a‘Xﬂbl)
[V (48)
T (y™)] = H gnH(X[y=bi)Pyn(b:;) _ onH(X[Y) (49)

i=1
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[1l. STRONG TYPICALITY
Definition 5 (e-strongly typical) A sequencer” € X is said to bee-strongly typical
with respect to a distributio®(z) on X if

1) For alla € X with Px(a) > 0 we have

| Pen(a) — Px(a)| < 5G] (50)

2) If Px(a) =0 thenPn(a) = 0.
Definition 6 (e-joint strongly typical) A pair of sequence&:™, y") € X x ) is said to
be e-joint strongly typicalwith respect to a distributio®(x,y) on X x Y if

1) For all (a,b) € X x Y with Pxy(a,b) > 0 we have

€

‘Px", n(a, b) — P)Qy((l, b)| S
! X[V

(51)
2) If PXVY(CL, b) >0 then PmnVyn(a,, b) = 0.

Definition 7 (Strongly typical set) The set of sequencds™,y") € X" x V" that are
e-joint strongly typical is calledstrongly typical setand is denoted a@”e(”)(X, Y) or
T (Pxy). le.,

TM(X,Y) & {(a",y") € X" X Y™ : |Pynyn — P(x,y)| < €} (52)
In a shorter notation we write it as
TE(”)(X, Y) & 2" y" i |Ponygn — P(z,y)| < €} (53)
Definition 8 (Strongly conditional typical set 7.™ (X |y™))
TW(Y]a") & {y": (@ y") € TM(X,Y)}
= {y" [Ponyr — Pla,y)] < €} (54)
The following lemma follows directly from the Sanov’'s Thear.

Lemma 3 Suppose w.l.o.g. tha(z) > 0 for all z € X (otherwise shrink the alphabet
to its effective size) and thak; are i.i.d.~ Q(z). Then there existg’(¢) such that

¢'(e) — 0 ase — 0 such that for all sufficiently large

9-nIDPIQIH] < Pr(X™ € T (P)) < 2~ "I~ (55)
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Lemma 4 Consider a joint distributiorPx y with marginal Px and Py. GenerateX™
i.i.d. ~ Py and~ Py. Then

2—n[I(X;Y)+5’] < PI’((X”, Yn) e Tve(n)()(7 Y)) < 2—n[I(X;Y)—5’}' (56)

IV. ALTERNATIVE PROOFS BASED ONLY ON PROBABILISTIC METHODS

A reminder on Types:

Pon(a) = 2L (57)
n
T(P)] = 2 (58)
" € T(P), Q'(a") = 2" (HEP*DEIQ) (59)
(60)
A reminder on strongly typical definition:
T (Py) = TM(X) = {a" € X" |Pum(a) — Px(a)| < ePx(a)} (61)

A. Jointly Strong Typical Set

Let us define
T (Pyy) = TM(X,Y) = {2",y" : |Punya(a,b) — Pxy(a,b)| < ePxy(a,b)}. (62)

Properties:

1) If X"~ iid. Py, then

lim Pr{X" e T/"(X)} =1 (63)
or equivalently
1—6(e) <Pr{X"eT"™(X)} <1, (64)

whereVe > 0, lim,,_,o, dc, = 0.

Proof: Because of the L.L.N. [ ]
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2) For X" ~ iid. ~ Py, then for any sequence® € T\ (X) we have
9= nH(X)(1+e€) (<)p HPX .%’Z (<) 9— nH(X)(1— 6) (65)
i=1

Proof: Note thatp(z") = [,y Px(a)¥*"), hence, the left hand side of the

inequality () follows from

Dlogp(an) = - > Nlals") log Px(o) (66)
- Z Py(a) log Px () (67)
e
> Z (1+ €)Px(a)log Px(a) (68)
= iH<X><1 ) (69)

where step(a) follows from (61).

The right hand side of the inequality:) follows from

1 1
—logp(a") = — > N(alz")log Px(a) (70)
aceX
= Z P, (a)log Px(a) (71)
aeX
<> (1 —€)Px(a)log Px(a) (72)
aceX
=—-H(X)(1—¢). (73)
[ |
3) The size of the strongly typical set can be bounded as
(%) (i7)
(1 o 567n)2nH(X)(176) < |T€(n)<X)‘ < 27’LH(X)(1+6). (74)

Proof: recall that(1 — §) < Pr{X" ¢ T! ”) X)} <1, then, the left hand side
inequality () follows from

Pr{X"eT™(X)}= > pla") (75)
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< Z an(H(X)(lfe) (76)
z"ET (X)
= [T (X) 27, 77

and becausél — §) < Pr {X” = Te(")(X)}, we get that(l — §)2nH()01-9 <
|T6(”) (X)|. The right hand side inequalityi) follows from

12 Pr{X" e TW(X)} (78)
= Z p(z") (79)
ZneT™ (X)
> Y g &0)
zreT™ (X)
= [T (X)) |2~ H X)) (81)
therefore,|T6(”)(X)| < QrH(X)(1+e) .

B. Conditionally strong typical set

For a givenz™ € X", let us define

Ty = {y": (¢ y") € T (X, Y)}. (82)

Notice that if (z", y") € T (X,Y), then surelyz” € TV (X).
Properties:

1) If 2" e T(X), p(y"|2™) = [T, Prix(vilz:) (DMC), e, < ¢, then
1 —dce,n <Pr {y" € Te(")(Y|x")} <1 (83)

whereVe, e, >0, dcc,n» = 0 @asn — oc.
Proof: Follows directly from the L.L.N. [ |
2) If y" € TV (Y]a"), p(y"a") = [T, Prix(vilz:) (DMC), then

(1)
9—nH (Y[X)(1+e) < p(y"|z") HPY\X yzm 2 nH(Y|X)(1—¢) (84)
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Proof: Notice that

y |l‘ H PY|X yz|l‘z H Py|X(b|a)N(a,b|a:",y"). (85)
acX
bey
Now, the left hand side of the inequality) follows from
1
~p(y"|2") ZN a,bla", y") log Py x (b|a) (86)
an
bey
= Py ye(a,b)log Pyx(bla) (87)
aceX
bey
> (14 €)Pxy(a,b)log Py|x(bla) (88)
acX
bey
= —H(Y|X)(1+e). (89)

The right hand side of the inequali(y'z') follows from
1

~p(y"|a") ZN (a,blz", y") log Py x (bla) (90)
aEX
bey
= Puyn(a,b)log Pyx(bla) (91)
acX
bey
<> (1 —€)Pxy(a,b)log Py x(bla) (92)
aceX
bey
=—HY|X)(1—¢). (93)
u
3) Givenz" € TV (X), then
(1 . 566 n)2nH(Y|X)(1+6) (ZS) |T€(n)(Y|an>| (%) 2TLH(Y‘X)(1*6). (94)

The proof is done in a similar way to the proof of (74).

Lemma 5 Consider a joint PMFPyy . Letz” € Ts(f)(X) andy™ drawn i.i.d. according

to Py and independent of", then

g-n{1eente) (<Pr{Y" e T (Y |2" } g -a) (95)
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for 6. — 0 ase — 0.

Proof: The left hand side inequalityi) follows from

Pr{y"eT"(Y|a")} = > py" (96)
yneTd™ (Y |an)

> Y gm0t (97)
yr el (v]am)

= [T (Y]a") 270 O0+9 (98)

> (1 = 6, ) 2" H Y IX) (1= g=nH(V)(1+) (99)

= (1 = )2 MY H0en), (100)

The right hand side inequalitgi:) follows from

Pr{y*eT"(Ylz"}= > " (oD
yreT™ (Y]an)

< Z 9—nH(Y)(1—€) (102)
yn T (Y [am)

= [T(Y fam) 2000 (109

< o (HON 1)) e (1O 1) (104)

_ gn(1xiv)-s) (105)

|
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APPENDIX |

PROBABILISTIC PROOF OFTHEOREM 2:

1 > Pr(z" e T(P)) (106)

2N Pr(a) (107)
xneT(P)

9N g (108)
xneT(P)

= [T(P)l27H®) (109)

(a) The probability of a subset where one element is chosen the whole set equals
to the sum of the probabilities of each element in the sulismt.example, if we have
a setA, B, C where the probability of choosing is P4, B is Pg andC' is Pg, where
P4+ Pp + Pc = 1, then the probability of choosing from the subgdt B) is P4 + Pg.
(b) Using Theorem 1.

Therefore:

T(P)| < 2"#") (110)

In order to prove the other part we need the following lemma:

Lemma 6 P*(T(P)) > P"(T(Q))

Proof: Let X™ be of a typeP. The termP"(T'(P)) is the probability of type class

T(P) where the sequences of lengttare drawn according t&(z") =[], P(x;), and

let Q € P,.
Consider
PYT(P)) @ |T(P)Ileex Pla)""™ (111)
PMT(Q)) T(Q)] Laex Pla) e
@ (nP(al),nP(ag) ,,,,, nP(a\X\)) Han P(a)nP(a) (112)

(na1)n(02). @t p) Tlaer P(0)"
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© g Ezggziiz P(a)"P@-Q(@) (113)

(a) Using the fact that probability of each typg. € P, is given by:
Py = H?:1 P(:pz) = Han P(a)N(aun) = HQEX P(a)np(a)-
(b) Using combinatorical math it is known that the number ogbilities to arange a

vector {33' Pyn = P} is: (nP(al),nP(@Z) ----- ”P(G\X\)).

( P(ay),nP( 2) P( ))
nP(aq),nP(ag),..., nP(a|y o (TLQ(G,))'
() ( = [acx Gy

Using the simple boun@— > n™"" we obtain:
P (T(P)

> (nP(a))nQ(a)—nP(a)P(a)”(P(a)—Q(a)) (114)
mg) = 1l
_ Hnn@(a)—P(a» (115)
acX
= (Cacx Q@) -Toex P@) (116)
_ nn(lfl) -1 (117)
|
Using Lemma 6 let us show th&f(P)| > 72:[1;\2\
1= > P(TQ) (118)
QEPn,
< Z maXP” Q)) (119)
QEPn,
@ > P (T(P)) (120)
QEPn,
®)
< (n+ DX P T(P)) (121)
D i 30 g (122)
zneT(P)
= (n+1)*T(P)]2 HP) (123)

(a) Using theorem 2 it is clear thahgxP”(T(Q)) = P"(T(P)).
(b) Using Lemma 1.
(c) Using Theorem 3.
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Therefore our final result is:

QnH(P)

T D™ < |T(P)| < 2"H(P) (124)

which imply that:

T(P)| = 2" (125)



