1. **Rate distortion for uniform source with Hamming distortion**.

Consider a source X uniformly distributed on the set $\{1, 2, \ldots, m\}$. Find the rate distortion function for this source with Hamming distortion, i.e.,

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x}, \\ 1 & \text{if } x \neq \hat{x}. \end{cases}$$

2. **Erasure distortion**

Consider $X \sim \text{Bernoulli}(\frac{1}{2})$, and let the distortion measure be given by the matrix

$$d(x, \hat{x}) = \begin{bmatrix} 0 & 1 & \infty \\ \infty & 1 & 0 \end{bmatrix}. \quad (1)$$

Calculate the rate distortion function for this source. Can you suggest a simple scheme to achieve any value of the rate distortion function for this source?

3. **Rate distortion.**

A memoryless source U is uniformly distributed on $\{0, \ldots, r-1\}$. The following distortion function is given by

$$d(u, v) = \begin{cases} 0, & u = v, \\ 1, & u = v \pm 1 \mod r, \\ \infty, & \text{otherwise}. \end{cases}$$

Show that the rate distortion function is

$$R(D) = \begin{cases} \log r - D - h_2(D), & D \leq \frac{2}{3}, \\ \log r - \log 3, & D > \frac{2}{3}. \end{cases}$$
4. **Adding a column to the distortion matrix.** Let $R(D)$ be the rate distortion function for an i.i.d. process with probability mass function $p(x)$ and distortion function $d(x, \hat{x})$, $x \in \mathcal{X}$, $\hat{x} \in \hat{\mathcal{X}}$. Now suppose that we add a new reproduction symbol \hat{x}_0 to $\hat{\mathcal{X}}$ with associated distortion $d(x, \hat{x}_0)$, $x \in \mathcal{X}$. Can this increase $R(D)$? Explain.

5. **Simplification.** Suppose $\mathcal{X} = \{1, 2, 3, 4\}$, $\hat{\mathcal{X}} = \{1, 2, 3, 4\}$, $p(i) = \frac{1}{4}$, $i = 1, 2, 3, 4$, and X_1, X_2, \ldots are i.i.d. $\sim p(x)$. The distortion matrix $d(x, \hat{x})$ is given by

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Find $R(0)$, the rate necessary to describe the process with zero distortion.

(b) Find the rate distortion function $R(D)$.

(Hint: The distortion measure allows to simplify the problem into one you have already seen.)

(c) Suppose we have a nonuniform distribution $p(i) = p_i$, $i = 1, 2, 3, 4$. What is $R(D)$?

6. **Rate distortion for two independent sources.** Can one simultaneously compress two independent sources better than compressing the sources individually? The following problem addresses this question. Let the pair $\{(X_i, Y_i)\}$ be iid $\sim p(x, y)$. The distortion measure for X is $d(x, \hat{x})$ and its rate distortion function is $R_X(D)$. Similarly, the distortion measure for Y is $d(y, \hat{y})$ and its rate distortion function is $R_Y(D)$.

Suppose we now wish to describe the process $\{(X_i, Y_i)\}$ subject to distortion constraints $\lim_{n \to \infty} Ed(X^n, \hat{X}^n) \leq D_1$ and $\lim_{n \to \infty} Ed(Y^n, \hat{Y}^n) \leq D_2$. Our rate distortion theorem can be shown to naturally extend to this setting and imply that the minimum rate required to achieve these distortion is given by

$$R_{X,Y}(D_1, D_2) = \min_{p(\hat{x}, \hat{y}|x,y): Ed(X,X) \leq D_1, Ed(Y,Y) \leq D_2} I(X, Y; \hat{X}, \hat{Y})$$
Now, suppose the \(\{X_i\} \) process and the \(\{Y_i\} \) process are independent of each other.

(a) Show
\[
R_{X,Y}(D_1, D_2) \geq R_X(D_1) + R_Y(D_2).
\]
(b) Does equality hold?

7. **One bit quantization of a single Gaussian random variable.**

Let \(X \sim \text{Norm}(0, \sigma^2) \) and let the distortion measure be squared error. Here we do not allow block descriptions. Show that the optimum reproduction points for 1 bit quantization are \(\pm \sqrt{\frac{2}{\pi}} \sigma \), and that the expected distortion for 1 bit quantization is \(\frac{2}{\pi} \sigma^2 \).

Compare this with the distortion rate bound \(D = \sigma^2 2^{-2R} \) for \(R = 1 \).

8. **Side information.**

A memoryless source generates i.i.d. pairs of random variables \((U_i, S_i), \ i = 1, 2, \ldots \) on finite alphabets, according to
\[
p(u^n, s^n) = \prod_{i=1}^{n} p(u_i, s_i).
\]

We are interested in describing \(U \), when \(S \), called side information, is known both at the encoder and at the decoder. Prove that the rate distortion function is given by
\[
R_{U|S}(D) = \min_{p(v|u,s):E[d(U,V)]\leq D} I(U;V|S).
\]

Compare \(R_{U|S}(D) \) with the ordinary rate distortion function \(R_U(D) \) without any side information. What can you say about the influence of the correlation between \(U \) and \(S \) on \(R_{U|S}(D) \)?

9. **Rate distortion to two users.** (50 points)

Consider a rate distortion problem where the source \(\{X_i\}_{i \geq 1} \) is i.i.d. distributed according to \(P(x) \) and a single message \(T(X^n) \in \{1, 2, \ldots, 2^{nR}\} \) is sent in blocks of length \(n \) to two users \(Y \) and \(Z \). The setting is illustrated in Fig. 1. The goal is that the reconstruction by the two users
will satisfy a distortion constraint

\[
E \left[\frac{1}{n} \sum_{i=1}^{n} d_y(X_i, Y_i) \right] \leq D_y,
\]

\[
E \left[\frac{1}{n} \sum_{i=1}^{n} d_z(X_i, Z_i) \right] \leq D_z,
\]

for some large \(n \), where \(Y_i \) and \(Z_i \) are the reconstructions at time \(i \) at User \(Y \) and User \(Z \), respectively.

(a) Find the minimum rate that can achieve the goal.

(b) Prove that such a code exists (achievability).

(c) Prove that does not exist a code with a lower rate than the one you found in a) that achieves the goal (converse).

(d) Consider the case where \(X \) is a Gaussian random variable with variance \(\sigma_x^2 \) and the distortions are the square error, i.e.,

\[
d_y(X_i, Y_i) = (X_i - Y_i)^2,
\]

\[
d_z(X_i, Z_i) = (X_i - Z_i)^2.
\]

\((3) \)

i. If \(D_z = \infty \) and \(D_y < \infty \), what is the minimum achievable rate?

ii. If \(D_z < \infty \) and \(D_y < \infty \), what is the minimum achievable rate?
(e) What is the rate needed to achieve a specific coordination $P(x)P(y, z|x)$. Prove it.

(f) Now consider the case that there is additional rate R' that is sent from the encoder to User Z only. This is shown in Fig. 2. Let the achievable rate region be the set of all pair-rates that achieve the distortion constraint. Define the code mathematically, find the achievable rate region, and provide a complete prove.