1st Semester 2012/13

Homework Set #3 source coding

1. Slepian-Wolf for deterministically related sources. Find and sketch the Slepian-Wolf rate region for the simultaneous data compression of (X, Y), where y = f(x) is some deterministic function of x.

Solutions

The quantities defining the Slepian Wolf rate region are H(X, Y) = H(X), H(Y|X) = 0 and $H(X|Y) \ge 0$. Hence the rate region is as shown in the Figure 1.

Figure 1: Slepian Wolf rate region for Y = f(X).

Figure 2: Slepian Wolf region for binary sources

2. Slepian Wolf for binary sources. Let X_i be i.i.d. Bernoulli(p). Let Z_i be i.i.d. ~ Bernoulli(r), and let **Z** be independent of **X**. Finally, let $\mathbf{Y} = \mathbf{X} \oplus \mathbf{Z} \pmod{2}$ addition). Let **X** be described at rate R_1 and **Y** be described at rate R_2 . What region of rates allows recovery of **X**, **Y** with probability of error tending to zero?

Solutions

 $X \sim \text{Bern}(p)$. $Y = X \oplus Z$, $Z \sim \text{Bern}(r)$. Then $Y \sim \text{Bern}(p * r)$, where p * r = p(1-r) + r(1-p). H(X) = H(p). H(Y) = H(p*r), H(X,Y) = H(X,Z) = H(X) + H(Z) = H(p) + H(r). Hence H(Y|X) = H(r) and H(X|Y) = H(p) + H(r) - H(p * r).

The Slepian Wolf region in this case is shown in Figure 2.

3. Computing simple example of Slepian Wolf

Let (X, Y) have the joint pmf p(x, y)

p(x,y)	1	2	3
1	α	β	β
2	β	α	β
3	β	β	α

where $\beta = \frac{1}{6} - \frac{\alpha}{2}$. (Note: This is a joint, not a conditional, probability mass function.)

- (a) Find the Slepian Wolf rate region for this source.
- (b) What is $Pr{X = Y}$ in terms of α ?
- (c) What is the rate region if $\alpha = \frac{1}{3}$?
- (d) What is the rate region if $\alpha = \frac{1}{9}$?

Solutions

(a) $H(X,Y) = -\sum p(x,y) \log p(x,y) = -3\alpha \log \alpha - 6\beta \log \beta$. Since X and Y are uniformly distributed

$$H(X) = H(Y) = \log 3 \tag{1}$$

and

$$H(X|Y) = H(Y|X) = H(3\alpha, 3\beta, 3\beta)$$
(2)

Hence the Slepian Wolf rate region is

$$R_1 \geq H(X|Y) = H(3\alpha, 3\beta, 3\beta) \tag{3}$$

$$R_2 \geq H(Y|X) = H(3\alpha, 3\beta, 3\beta) \tag{4}$$

$$R_1 + R_2 \ge H(X, Y) = H(3\alpha, 3\beta, 3\beta) + \log 3$$
 (5)

- (b) From the joint distribution, $Pr(X = Y) = 3\alpha$.
- (c) If $\alpha = \frac{1}{3}$, $\beta = 0$, and H(X|Y) = H(Y|X) = 0. The rate region then becomes

$$R_1 \geq 0 \tag{6}$$

$$R_2 \geq 0 \tag{7}$$

$$R_1 + R_2 \geq \log 3 \tag{8}$$

(d) If $\alpha = \frac{1}{9}$, $\beta = \frac{1}{9}$, and $H(X|Y) = H(Y|X) = \log 3$. X and Y are independent, and the rate region then becomes

$$R_1 \geq \log 3 \tag{9}$$

$$R_2 \geq \log 3 \tag{10}$$

$$R_1 + R_2 \geq 2\log 3 \tag{11}$$

4. An example of Slepian-Wolf: Two senders know random variables U_1 and U_2 respectively. Let the random variables (U_1, U_2) have the following joint distribution:

$U_1 \backslash U_2$	0	1	2	• • •	m-1
0	α	$\frac{\beta}{m-1}$	$\frac{\beta}{m-1}$	•••	$\frac{\beta}{m-1}$
1	$\frac{\gamma}{m-1}$	0	0	•••	0
2	$\frac{\gamma}{m-1}$	0	0	• • •	0
:	:	÷	÷	۰.	÷
m-1	$\frac{\gamma}{m-1}$	0	0	• • •	0

where $\alpha + \beta + \gamma = 1$. Find the region of rates (R_1, R_2) that would allow a common receiver to decode both random variables reliably. **Solutions** For this joint distribution,

$$H(U_1) = H(\alpha + \beta, \frac{\gamma}{m-1}, \dots, \frac{\gamma}{m-1}) = H(\alpha + \beta, \gamma) + \gamma \log(m-1)$$
(12)

$$H(U_2) = H(\alpha + \gamma, \frac{\beta}{m-1}, \dots, \frac{\beta}{m-1}) = H(\alpha + \gamma, \beta) + \beta \log(m-1)$$
(13)

$$H(U_1, U_2) = H\left(\alpha, \frac{\beta}{m-1}, \dots, \frac{\beta}{m-1}, \frac{\gamma}{m-1}, \dots, \frac{\gamma}{m-1}\right)$$
(14)

$$= H(\alpha, \beta, \gamma) + \beta \log(m-1) + \gamma \log(m-1)$$
(15)

$$H(U_1|U_2) = H(\alpha, \beta, \gamma) - H(\alpha + \gamma, \beta) + \gamma \log(m-1)$$
(16)

$$H(U_2|U_1) = H(\alpha, \beta, \gamma) - H(\alpha + \beta, \gamma) + \beta \log(m - 1)$$
(17)

and hence the Slepian Wolf region is

$$R_1 \geq H(\alpha, \beta, \gamma) - H(\alpha + \gamma, \beta) + \gamma \log(m-1)$$
(18)

$$R_2 \geq H(\alpha, \beta, \gamma) - H(\alpha + \beta, \gamma) + \beta \log(m - 1)$$
 (19)

$$R_1 + R_2 \geq H(\alpha, \beta, \gamma) + \beta \log(m-1) + \gamma \log(m-1)$$
 (20)

- 5. Stereo. The sum and the difference of the right and left ear signals are to be individually compressed for a common receiver. Let Z_1 be Bernoulli (p_1) and Z_2 be Bernoulli (p_2) and suppose Z_1 and Z_2 are independent. Let $X = Z_1 + Z_2$, and $Y = Z_1 Z_2$.
 - (a) What is the Slepian Wolf rate region of achievable (R_X, R_Y) ?

(b) Is this larger or smaller than the rate region of (R_{Z_1}, R_{Z_2}) ? Why?

There is a simple way to do this part.

Solutions

The joint distribution of X and Y is shown in following table

Z_1	Z_2	X	Y	probability
0	0	0	0	$(1-p_1)(1-p_2)$
0	1	1	-1	$(1-p_1)p_2$
1	0	1	1	$p_1(1-p_2)$
1	1	2	0	p_1p_2

and hence we can calculate

$$H(X) = H(p_1p_2, p_1 + p_2 - 2p_1p_2, (1 - p_1)(1 - p_2))$$
(21)

$$H(Y) = H(p_1p_2 + (1 - p_1)(1 - p_2), p_1 - p_1p_2, p_2 - p_1p_2)$$
(22)

and

$$H(X,Y) = H(Z_1, Z_2) = H(p_1) + H(p_2)$$
(23)

and therefore

$$H(X|Y) = H(p_1) + H(p_2) - H(p_1p_2 + (1 - p_1)(1 - p_2), p_1 - p_1p_2, p_2 - p_1p_2)$$

$$H(Y|X) = H(p_1) + H(p_2) - H(p_1p_2, p_1 + p_2 - 2p_1p_2, (1 - p_1)(1 - p_2))$$
(24)

The Slepian Wolf region in this case is

$$R_{1} \geq H(X|Y) = H(p_{1}) + H(p_{2}) - H(p_{1}p_{2} + (1 - p_{1})(1 - p_{2}), p_{1} - p_{1}p_{2}, p_{2} - p_{1}p_{2}$$

$$R_{2} \geq H(Y|X) = H(p_{1}) + H(p_{2}) - H(p_{1}p_{2}, p_{1} + p_{2} - 2p_{1}p_{2}, (1 - p_{1})(1 - p_{2}))$$

$$R_{1} + R_{2} \geq H(p_{1}) + H(p_{2})$$
(25)

The Slepian Wolf region for (Z_1, Z_2) is

$$R_1 \geq H(Z_1|Z_2) = H(p_1)$$
 (26)

$$R_2 \geq H(Z_2|Z_1) = H(p_2)$$
 (27)

$$R_1 + R_2 \ge H(Z_1, Z_2) = H(p_1) + H(p_2)$$
 (28)

which is a rectangular region.

The minimum sum of rates is the same in both cases, since if we knew both X and Y, we could find Z_1 and Z_2 and vice versa. However, the region in part (a) is usually pentagonal in shape, and is larger than the region in (b).

6. Distributed data compression. Let Z_1, Z_2, Z_3 be independent Bernoulli(p). Find the Slepian-Wolf rate region for the description of (X_1, X_2, X_3) where

$$\begin{array}{rclrcl} X_1 & = & Z_1 \\ X_2 & = & Z_1 + Z_2 \\ X_3 & = & Z_1 + Z_2 + Z_3 \end{array} .$$

Solutions.

To establish the rate region, appeal to Theorem 14.4.2 in the text, which generalizes the case with two encoders. The inequalities defining the rate region are given by

$$R(S) > H(X(S)|X(S^c))$$

for all $S \subseteq \{1, 2, 3\}$, and $R(S) = \sum_{i \in S} R_i$. The rest is calculating entropies $H(X(S)|X(S^c))$ for each S. We have

$$\begin{array}{rclrcl} H_1 &=& H(X_1) &=& H(Z_1) &=& H(p), \\ H_2 &=& H(X_2) &=& H(Z_1+Z_2) &=& H(p^2,2p(1-p),(1-p)^2), \\ H_3 &=& H(X_3) &=& H(Z_1+Z_2+Z_3) \\ &=& H(p^3,3p^2(1-p),3p(1-p)^2,(1-p)^3), \\ H_{12} &=& H(X_1,X_2) &=& H(Z_1,Z_2) &=& 2H(p), \\ H_{13} &=& H(X_1,X_3) &=& H(X_1) + H(X_3|X_1) &=& H(X_1) + H(Z_2+Z_3) \\ &=& H(p^2,2p(1-p),(1-p)^2) + H(p), \\ H_{23} &=& H(X_2,X_3) &=& H(X_2) + H(X_3|X_2) &=& H(X_2) + H(Z_3) \\ &=& H(p^2,2p(1-p),(1-p)^2) + H(p), \\ H_{13} &=& H(X_1,X_2,X_3) &=& H(Z_1,Z_2,Z_3) &=& 3H(p). \end{array}$$

Using the above identities and chain rule, we obtain the rate region as

$$\begin{array}{rclrcl} R_1 &>& H(X_1|X_2,X_3) &=& H_{123}-H_{23} \\ &=& 2H(p)-H(p^2,2p(1-p),(1-p)^2) &=& 2p(1-p), \\ R_2 &>& H(X_2|X_1,X_3) &=& H_{123}-H_{13} &=& 2p(1-p), \\ R_3 &>& H(X_3|X_1,X_2) &=& H_{123}-H_{12} &=& H(p), \\ R_1+R_2 &>& H(X_1,X_2|X_3) &=& H_{123}-H_3 \\ &=& 3H(p)-H(p^3,3p^2(1-p),3p(1-p)^2,(1-p)^3) &=& 3p(1-p)\log(3), \\ R_1+R_3 &>& H(X_1,X_3|X_2) &=& H_{123}-H_2 \\ &=& 3H(p)-H(p^2,2p(1-p),(1-p)^2) &=& H(p)+2p(1-p), \\ R_2+R_3 &>& H(X_2,X_3|X_1) &=& H_{123}-H_1 &=& 2H(p), \\ R_1+R_2+R_3 &>& H_{123} &=& 3H(p). \end{array}$$

- 7. Gaussian Wyner-Ziv Show that for a mean square distortion where the source X and Y are jointly Gaussian, the best auxiliary random variable is Gaussian and the distortion is as Y is known to the Encoder.
- 8. Wyner ziv with two decoders and one message Consider the coordination Wyner-Ziv problem, but where the message at rate R reaches two decoders. Assume that there is a degradation of the side information at the decoders, and the first decoder has a side information Y and the second decoder does not have any side information at all. Let \hat{X}_1 be the action taken by Decode 1 and \hat{X}_2 the action taken by Decode 2. Show that in order to achieve a (weak) coordination $P_0(x, y)P(\hat{x}_2|x)P(\hat{x}_1|x, y, \hat{x}_2)$ then

$$R \ge I(X; X_2) + I(X; U|X_2, Y) \tag{29}$$

where the joint distribution is of the form $P_0(x, y)P(\hat{x}_2|x)P(\hat{u}|x, y, \hat{x}_2)P(\hat{x}_1|u, x, y, \hat{x}_2)$ with a marginal (summing over u) is the coordination pmf $P_0(x, y)P(\hat{x}_2|x)P(\hat{x}_1|x, y, \hat{x}_2)$. Furthermore, show that if (29) holds for some auxiliary U then there exists a code that achieves a coordination $P_0(x, y)P(\hat{x}_2|x)P(\hat{x}_1|x, y, \hat{x}_2)$.