Homework Set \#3
 source coding

1. Slepian-Wolf for deterministically related sources. Find and sketch the Slepian-Wolf rate region for the simultaneous data compression of (X, Y), where $y=f(x)$ is some deterministic function of x.

Solutions

The quantities defining the Slepian Wolf rate region are $H(X, Y)=$ $H(X), H(Y \mid X)=0$ and $H(X \mid Y) \geq 0$. Hence the rate region is as shown in the Figure 1.

Figure 1: Slepian Wolf rate region for $Y=f(X)$.

Figure 2: Slepian Wolf region for binary sources
2. Slepian Wolf for binary sources. Let X_{i} be i.i.d. Bernoulli (p). Let Z_{i} be i.i.d. $\sim \operatorname{Bernoulli}(r)$, and let \mathbf{Z} be independent of \mathbf{X}. Finally, let $\mathbf{Y}=\mathbf{X} \oplus \mathbf{Z}(\bmod 2$ addition $)$. Let \mathbf{X} be described at rate R_{1} and \mathbf{Y} be described at rate R_{2}. What region of rates allows recovery of \mathbf{X}, \mathbf{Y} with probability of error tending to zero?

Solutions

$X \sim \operatorname{Bern}(p) . Y=X \oplus Z, Z \sim \operatorname{Bern}(r)$. Then $Y \sim \operatorname{Bern}(p * r)$, where $p * r=p(1-r)+r(1-p) . H(X)=H(p) . H(Y)=H(p * r), H(X, Y)=$ $H(X, Z)=H(X)+H(Z)=H(p)+H(r)$. Hence $H(Y \mid X)=H(r)$ and $H(X \mid Y)=H(p)+H(r)-H(p * r)$.
The Slepian Wolf region in this case is shown in Figure 2.
3. Computing simple example of Slepian Wolf

Let (X, Y) have the joint $\operatorname{pmf} p(x, y)$

$\mathrm{p}(\mathrm{x}, \mathrm{y})$	1	2	3
1	α	β	β
2	β	α	β
3	β	β	α

where $\beta=\frac{1}{6}-\frac{\alpha}{2}$. (Note: This is a joint, not a conditional, probability mass function.)
(a) Find the Slepian Wolf rate region for this source.
(b) What is $\operatorname{Pr}\{X=Y\}$ in terms of α ?
(c) What is the rate region if $\alpha=\frac{1}{3}$?
(d) What is the rate region if $\alpha=\frac{1}{9}$?

Solutions

(a) $H(X, Y)=-\sum p(x, y) \log p(x, y)=-3 \alpha \log \alpha-6 \beta \log \beta$. Since X and Y are uniformly distributed

$$
\begin{equation*}
H(X)=H(Y)=\log 3 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
H(X \mid Y)=H(Y \mid X)=H(3 \alpha, 3 \beta, 3 \beta) \tag{2}
\end{equation*}
$$

Hence the Slepian Wolf rate region is

$$
\begin{align*}
R_{1} & \geq H(X \mid Y)=H(3 \alpha, 3 \beta, 3 \beta) \tag{3}\\
R_{2} & \geq H(Y \mid X)=H(3 \alpha, 3 \beta, 3 \beta) \tag{4}\\
R_{1}+R_{2} & \geq H(X, Y)=H(3 \alpha, 3 \beta, 3 \beta)+\log 3 \tag{5}
\end{align*}
$$

(b) From the joint distribution, $\operatorname{Pr}(X=Y)=3 \alpha$.
(c) If $\alpha=\frac{1}{3}, \beta=0$, and $H(X \mid Y)=H(Y \mid X)=0$. The rate region then becomes

$$
\begin{align*}
R_{1} & \geq 0 \tag{6}\\
R_{2} & \geq 0 \tag{7}\\
R_{1}+R_{2} & \geq \log 3 \tag{8}
\end{align*}
$$

(d) If $\alpha=\frac{1}{9}, \beta=\frac{1}{9}$, and $H(X \mid Y)=H(Y \mid X)=\log 3 . X$ and Y are independent, and the rate region then becomes

$$
\begin{align*}
R_{1} & \geq \log 3 \tag{9}\\
R_{2} & \geq \log 3 \tag{10}\\
R_{1}+R_{2} & \geq 2 \log 3 \tag{11}
\end{align*}
$$

4. An example of Slepian-Wolf: Two senders know random variables U_{1} and U_{2} respectively. Let the random variables $\left(U_{1}, U_{2}\right)$ have the following joint distribution:

$U_{1} \backslash U_{2}$	0	1	2	\cdots	$m-1$
0	α	$\frac{\beta}{m-1}$	$\frac{\beta}{m-1}$	\cdots	$\frac{\beta}{m-1}$
1	$\frac{\gamma}{m-1}$	0	0	\cdots	0
2	$\frac{\gamma}{m-1}$	0	0	\cdots	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
$m-1$	$\frac{\gamma}{m-1}$	0	0	\cdots	0

where $\alpha+\beta+\gamma=1$. Find the region of rates $\left(R_{1}, R_{2}\right)$ that would allow a common receiver to decode both random variables reliably.
Solutions For this joint distribution,

$$
\begin{align*}
& H\left(U_{1}\right)=H\left(\alpha+\beta, \frac{\gamma}{m-1}, \ldots, \frac{\gamma}{m-1}\right)=H(\alpha+\beta, \gamma)+\gamma \log (m-1) \\
& H\left(U_{2}\right)=H\left(\alpha+\gamma, \frac{\beta}{m-1}, \ldots, \frac{\beta}{m-1}\right)=H(\alpha+\gamma, \beta)+\beta \log (m-1) \tag{12}
\end{align*}
$$

$$
\begin{align*}
H\left(U_{1}, U_{2}\right) & =H\left(\alpha, \frac{\beta}{m-1}, \ldots, \frac{\beta}{m-1}, \frac{\gamma}{m-1}, \ldots, \frac{\gamma}{m-1}\right) \tag{14}\\
& =H(\alpha, \beta, \gamma)+\beta \log (m-1)+\gamma \log (m-1) \tag{15}
\end{align*}
$$

$$
\begin{align*}
& H\left(U_{1} \mid U_{2}\right)=H(\alpha, \beta, \gamma)-H(\alpha+\gamma, \beta)+\gamma \log (m-1) \tag{16}\\
& H\left(U_{2} \mid U_{1}\right)=H(\alpha, \beta, \gamma)-H(\alpha+\beta, \gamma)+\beta \log (m-1) \tag{17}
\end{align*}
$$

and hence the Slepian Wolf region is

$$
\begin{align*}
R_{1} & \geq H(\alpha, \beta, \gamma)-H(\alpha+\gamma, \beta)+\gamma \log (m-1) \tag{18}\\
R_{2} & \geq H(\alpha, \beta, \gamma)-H(\alpha+\beta, \gamma)+\beta \log (m-1) \tag{19}\\
R_{1}+R_{2} & \geq H(\alpha, \beta, \gamma)+\beta \log (m-1)+\gamma \log (m-1) \tag{20}
\end{align*}
$$

5. Stereo. The sum and the difference of the right and left ear signals are to be individually compressed for a common receiver. Let Z_{1} be Bernoulli $\left(p_{1}\right)$ and Z_{2} be Bernoulli (p_{2}) and suppose Z_{1} and Z_{2} are independent. Let $X=Z_{1}+Z_{2}$, and $Y=Z_{1}-Z_{2}$.
(a) What is the Slepian Wolf rate region of achievable $\left(R_{X}, R_{Y}\right)$?

(b) Is this larger or smaller than the rate region of $\left(R_{Z_{1}}, R_{Z_{2}}\right)$? Why?

There is a simple way to do this part.

Solutions

The joint distribution of X and Y is shown in following table

Z_{1}	Z_{2}	X	Y	probability
0	0	0	0	$\left(1-p_{1}\right)\left(1-p_{2}\right)$
0	1	1	-1	$\left(1-p_{1}\right) p_{2}$
1	0	1	1	$p_{1}\left(1-p_{2}\right)$
1	1	2	0	$p_{1} p_{2}$

and hence we can calculate

$$
\begin{gather*}
H(X)=H\left(p_{1} p_{2}, p_{1}+p_{2}-2 p_{1} p_{2},\left(1-p_{1}\right)\left(1-p_{2}\right)\right) \tag{21}\\
H(Y)=H\left(p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right), p_{1}-p_{1} p_{2}, p_{2}-p_{1} p_{2}\right) \tag{22}
\end{gather*}
$$

and

$$
\begin{equation*}
H(X, Y)=H\left(Z_{1}, Z_{2}\right)=H\left(p_{1}\right)+H\left(p_{2}\right) \tag{23}
\end{equation*}
$$

and therefore
$H(X \mid Y)=H\left(p_{1}\right)+H\left(p_{2}\right)-H\left(p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right), p_{1}-p_{1} p_{2}, p_{2}-p_{1} p_{2}\right)$
$H(Y \mid X)=H\left(p_{1}\right)+H\left(p_{2}\right)-H\left(p_{1} p_{2}, p_{1}+p_{2}-2 p_{1} p_{2},\left(1-p_{1}\right)\left(1-p_{2}\right)\right)$
The Slepian Wolf region in this case is

$$
\begin{aligned}
R_{1} & \geq H(X \mid Y)=H\left(p_{1}\right)+H\left(p_{2}\right)-H\left(p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right), p_{1}-p_{1} p_{2}, p_{2}-p_{1} p_{2}\right. \\
R_{2} & \geq H(Y \mid X)=H\left(p_{1}\right)+H\left(p_{2}\right)-H\left(p_{1} p_{2}, p_{1}+p_{2}-2 p_{1} p_{2},\left(1-p_{1}\right)\left(1-p_{2}\right)\right) \\
R_{1}+R_{2} & \geq H\left(p_{1}\right)+H\left(p_{2}\right)
\end{aligned}
$$

The Slepian Wolf region for $\left(Z_{1}, Z_{2}\right)$ is

$$
\begin{align*}
R_{1} & \geq H\left(Z_{1} \mid Z_{2}\right)=H\left(p_{1}\right) \tag{26}\\
R_{2} & \geq H\left(Z_{2} \mid Z_{1}\right)=H\left(p_{2}\right) \tag{27}\\
R_{1}+R_{2} & \geq H\left(Z_{1}, Z_{2}\right)=H\left(p_{1}\right)+H\left(p_{2}\right) \tag{28}
\end{align*}
$$

which is a rectangular region.
The minimum sum of rates is the same in both cases, since if we knew both X and Y, we could find Z_{1} and Z_{2} and vice versa. However, the region in part (a) is usually pentagonal in shape, and is larger than the region in (b).
6. Distributed data compression. Let Z_{1}, Z_{2}, Z_{3} be independent $\operatorname{Bernoulli}(p)$.

Find the Slepian-Wolf rate region for the description of $\left(X_{1}, X_{2}, X_{3}\right)$ where

$$
\begin{aligned}
& X_{1}=Z_{1} \\
& X_{2}=Z_{1}+Z_{2} \\
& X_{3}=Z_{1}+Z_{2}+Z_{3} .
\end{aligned}
$$

Solutions.

To establish the rate region, appeal to Theorem 14.4.2 in the text, which generalizes the case with two encoders. The inequalities defining the rate region are given by

$$
R(S)>H\left(X(S) \mid X\left(S^{c}\right)\right)
$$

for all $S \subseteq\{1,2,3\}$, and $R(S)=\sum_{i \in S} R_{i}$.
The rest is calculating entropies $H\left(X(S) \mid X\left(S^{c}\right)\right)$ for each S. We have

$$
\begin{aligned}
H_{1} & =H\left(X_{1}\right)=H\left(Z_{1}\right)=H(p), \\
H_{2} & =H\left(X_{2}\right)=H\left(Z_{1}+Z_{2}\right)=H\left(p^{2}, 2 p(1-p),(1-p)^{2}\right) \\
H_{3} & =H\left(X_{3}\right)=H\left(Z_{1}+Z_{2}+Z_{3}\right) \\
& =H\left(p^{3}, 3 p^{2}(1-p), 3 p(1-p)^{2},(1-p)^{3}\right), \\
H_{12} & =H\left(X_{1}, X_{2}\right)=H\left(Z_{1}, Z_{2}\right)=2 H(p), \\
H_{13} & =H\left(X_{1}, X_{3}\right)=H\left(X_{1}\right)+H\left(X_{3} \mid X_{1}\right)=H\left(X_{1}\right)+H\left(Z_{2}+Z_{3}\right) \\
& =H\left(p^{2}, 2 p(1-p),(1-p)^{2}\right)+H(p), \\
H_{23} & =H\left(X_{2}, X_{3}\right)=H\left(X_{2}\right)+H\left(X_{3} \mid X_{2}\right)=H\left(X_{2}\right)+H\left(Z_{3}\right) \\
& =H\left(p^{2}, 2 p(1-p),(1-p)^{2}\right)+H(p), \quad \text { and } \\
H_{123} & =H\left(X_{1}, X_{2}, X_{3}\right)=H\left(Z_{1}, Z_{2}, Z_{3}\right)=3 H(p) .
\end{aligned}
$$

Using the above identities and chain rule, we obtain the rate region as

$$
\begin{aligned}
R_{1} & >H\left(X_{1} \mid X_{2}, X_{3}\right)=H_{123}-H_{23} \\
& =2 H(p)-H\left(p^{2}, 2 p(1-p),(1-p)^{2}\right)=2 p(1-p) \\
R_{2} & >H\left(X_{2} \mid X_{1}, X_{3}\right)=H_{123}-H_{13}=2 p(1-p) \\
R_{3} & >H\left(X_{3} \mid X_{1}, X_{2}\right)=H_{123}-H_{12}=H(p) \\
R_{1}+R_{2} & >H\left(X_{1}, X_{2} \mid X_{3}\right)=H_{123}-H_{3} \\
& =3 H(p)-H\left(p^{3}, 3 p^{2}(1-p), 3 p(1-p)^{2},(1-p)^{3}\right)=3 p(1-p) \log (3) \\
R_{1}+R_{3} & >H\left(X_{1}, X_{3} \mid X_{2}\right)=H_{123}-H_{2} \\
& =3 H(p)-H\left(p^{2}, 2 p(1-p),(1-p)^{2}\right)=H(p)+2 p(1-p) \\
R_{2}+R_{3} & >H\left(X_{2}, X_{3} \mid X_{1}\right)=H_{123}-H_{1}=2 H(p), \quad \text { and } \\
R_{1}+R_{2}+R_{3} & >H_{123}=3 H(p)
\end{aligned}
$$

7. Gaussian Wyner-Ziv Show that for a mean square distortion where the source X and Y are jointly Gaussian, the best auxiliary random variable is Gaussian and the distortion is as Y is known to the Encoder.
8. Wyner ziv with two decoders and one message Consider the coordination Wyner-Ziv problem, but where the message at rate R reaches two decoders. Assume that there is a degradation of the side information at the decoders, and the first decoder has a side information Y and the second decoder does not have any side information at all. Let \hat{X}_{1} be the action taken by Decode 1 and \hat{X}_{2} the action taken by Decode 2. Show that in order to achieve a (weak) coordination $P_{0}(x, y) P\left(\hat{x}_{2} \mid x\right) P\left(\hat{x}_{1} \mid x, y, \hat{x}_{2}\right)$ then

$$
\begin{equation*}
R \geq I\left(X ; \hat{X}_{2}\right)+I\left(X ; U \mid X_{2}, Y\right) \tag{29}
\end{equation*}
$$

where the joint distribution is of the form $P_{0}(x, y) P\left(\hat{x}_{2} \mid x\right) P\left(\hat{u} \mid x, y, \hat{x}_{2}\right) P\left(\hat{x}_{1} \mid u, x, y, \hat{x}_{2}\right)$ with a marginal (summing over u) is the coordination pmf $P_{0}(x, y) P\left(\hat{x}_{2} \mid x\right) P\left(\hat{x}_{1} \mid x, y, \hat{x}_{2}\right)$. Furthermore, show that if (29) holds for some auxiliary U then there exists a code that achieves a coordination $P_{0}(x, y) P\left(\hat{x}_{2} \mid x\right) P\left(\hat{x}_{1} \mid x, y, \hat{x}_{2}\right)$.

